No Arabic abstract
In this paper we consider two problems regarding the scheduling of available personnel in order to perform a given quantity of work, which can be arbitrarily decomposed into a sequence of activities. We are interested in schedules which minimize the overall dissatisfaction, where each employees dissatisfaction is modeled as a time-dependent linear function. For the two situations considered we provide a detailed mathematical analysis, as well as efficient algorithms for determining optimal schedules.
We consider a transmission scheduling problem in which multiple systems receive update information through a shared Time Division Multiple Access (TDMA) channel. To provide timely delivery of update information, the problem asks for a schedule that minimizes the overall age of information. We call this problem the Min-Age problem. This problem is first studied by He textit{et al.} [IEEE Trans. Inform. Theory, 2018], who identified several special cases where the problem can be solved optimally in polynomial time. Our contribution is threefold. First, we introduce a new job scheduling problem called the Min-WCS problem, and we prove that, for any constant $r geq 1$, every $r$-approximation algorithm for the Min-WCS problem can be transformed into an $r$-approximation algorithm for the Min-Age problem. Second, we give a randomized 2.733-approximation algorithm and a dynamic-programming-based exact algorithm for the Min-WCS problem. Finally, we prove that the Min-Age problem is NP-hard.
Consider the problem where $n$ jobs, each with a release time, a deadline and a required processing time are to be feasibly scheduled in a single- or multi-processor setting so as to minimize the total energy consumption of the schedule. A processor has two available states: a emph{sleep state} where no energy is consumed but also no processing can take place, and an emph{active state} which consumes energy at a rate of one, and in which jobs can be processed. Transitioning from the active to the sleep does not incur any further energy cost, but transitioning from the sleep to the active state requires $q$ energy units. Jobs may be preempted and (in the multi-processor case) migrated. The single-processor case of the problem is known to be solvable in polynomial time via an involved dynamic program, whereas the only known approximation algorithm for the multi-processor case attains an approximation factor of $3$ and is based on rounding the solution to a linear programming relaxation of the problem. In this work, we present efficient and combinatorial approximation algorithms for both the single- and the multi-processor setting. Before, only an algorithm based on linear programming was known for the multi-processor case. Our algorithms build upon the concept of a emph{skeleton}, a basic (and not necessarily feasible) schedule that captures the fact that some processor(s) must be active at some time point during an interval. Finally, we further demonstrate the power of skeletons by providing an $2$-approximation algorithm for the multiprocessor case, thus improving upon the recent breakthrough $3$-approximation result. Our algorithm is based on a novel rounding scheme of a linear-programming relaxation of the problem which incorporates skeletons.
The quest for robust heuristics that are able to solve more than one problem is ongoing. In this paper, we present, discuss and analyse a technique called Evolutionary Squeaky Wheel Optimisation and apply it to two different personnel scheduling problems. Evolutionary Squeaky Wheel Optimisation improves the original Squeaky Wheel Optimisations effectiveness and execution speed by incorporating two extra steps (Selection and Mutation) for added evolution. In the Evolutionary Squeaky Wheel Optimisation, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The aim of the Analysis step is to identify below average solution components by calculating a fitness value for all components. The Selection step then chooses amongst these underperformers and discards some probabilistically based on fitness. The Mutation step further discards a few components at random. Solutions can become incomplete and thus repairs may be required. The repairs are carried out by using the Prioritization to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, improvement in the Evolutionary Squeaky Wheel Optimisation is achieved by selective solution disruption mixed with interative improvement and constructive repair. Strong experimental results are reported on two different domains of personnel scheduling: bus and rail driver scheduling and hospital nurse scheduling.
Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with adaptive perturbations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then mimic a natural evolutionary process on these components to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs a dynamic evaluation function which evaluates how well each component contributes towards the final objective. Two perturbation steps are then applied: the first perturbation eliminates a number of components that are deemed not worthy to stay in the current schedule; the second perturbation may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.
We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine) who performs the tasks. A typical workers objective is to minimize the amount of work he does (he is ``lazy), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse scheduling problems, which we denote ``Lazy Bureaucrat Problems, gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.