No Arabic abstract
We report an experimental study of the large-scale circulation (LSC) in a turbulent Rayleigh-B{e}nard convection cell with aspect ratio unity. The temperature-extremum-extraction (TEE) method for obtaining the dynamic information of the LSC is presented. With this method, the azimuthal angular positions of the hot ascending and cold descending flows along the sidewall are identified from the measured instantaneous azimuthal temperature profile. The motion of the LSC is then decomposed into two different modes: the azimuthal mode and the translational or off-center mode. Comparing to the previous sinusoidal-fitting (SF) method, it is found that both methods give the same information about the azimuthal motion of the LSC, but the TEE method in addition can provide information about the off-center motion of the LSC, which is found to oscillate time-periodically around the cells central vertical axis with an amplitude being nearly independent of the turbulent intensity. It is further found that the azimuthal angular positions of the hot ascending flow near the bottom plate and the cold descending flow near the top plate oscillate periodically out of phase by $pi$, leading to the torsional mode of the LSC. These oscillations are then propagated vertically along the sidewall by the hot ascending and cold descending fluids. When they reach the mid-height plane, the azimuthal positions of the hottest and coldest fluids again oscillate out of phase by $pi$. It is this out-of-phase horizontal positional oscillation of the hottest and coldest fluids at the same horizontal plane that produces the off-center oscillation of the LSC. A direct velocity measurement further confirms the existence of the bulk off-center mode of the flow field near cell center.
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Benard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a polynomial fit to the azimuthal temperature or azimuthal vertical velocity profile measured with the probes. We study the LSC in Gamma=D/L=1/2 and Gamma=1 samples, where D is the diameter and L the height. For Pr=6.4 in an aspect ratio Gamma=1 sample at $Ra=1times10^8$ and $5times10^8$ the obtained LSC orientation is the same, irrespective of whether the data of only 8 or all 64 probes per horizontal plane are considered. In a Gamma=1/2 sample with $Pr=0.7$ at $Ra=1times10^8$ the influence of plumes on the azimuthal temperature and azimuthal vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow the apparent LSC orientation obtained using a cosine fit can result in a misinterpretation of the character of the large-scale flow. We introduce the relative LSC strength, which we define as the ratio between the energy in the first Fourier mode and the energy in all modes that can be determined from the azimuthal temperature and azimuthal vertical velocity profiles, to further quantify the large-scale flow. For $Ra=1times10^8$ we find that this relative LSC strength is significantly lower in a Gamma=1/2 sample than in a Gamma=1 sample, reflecting that the LSC is much more pronounced in a Gamma=1 sample than in a Gamma=1/2 sample. The determination of the relative LSC strength can be applied directly to available experimental data to study high Rayleigh number thermal convection and rotating RB convection.
The shape of velocity and temperature profiles near the horizontal conducting plates in turbulent Rayleigh-B{e}nard convection are studied numerically and experimentally over the Rayleigh number range $10^8lesssim Ralesssim3times10^{11}$ and the Prandtl number range $0.7lesssim Prlesssim5.4$. The results show that both the temperature and velocity profiles well agree with the classical Prandtl-Blasius laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses.
If a fluid flow is driven by a weak Gaussian random force, the nonlinearity in the Navier-Stokes equations is negligibly small and the resulting velocity field obeys Gaussian statistics. Nonlinear effects become important as the driving becomes stronger and a transition occurs to turbulence with anomalous scaling of velocity increments and derivatives. This process has been described by V. Yakhot and D. A. Donzis, Phys. Rev. Lett. 119, 044501 (2017) for homogeneous and isotropic turbulence (HIT). In more realistic flows driven by complex physical phenomena, such as instabilities and nonlocal forces, the initial state itself, and the transition to turbulence from that initial state, are much more complex. In this paper, we discuss the Reynolds-number-dependence of moments of the kinetic energy dissipation rate of orders 2 and 3 obtained in the bulk of thermal convection in the Rayleigh-B{e}nard system. The data are obtained from three-dimensional spectral element direct numerical simulations in a cell with square cross section and aspect ratio 25 by A. Pandey et al., Nat. Commun. 9, 2118 (2018). Different Reynolds numbers $1 lesssim {rm Re}_{ell} lesssim 1000$ which are based on the thickness of the bulk region $ell$ and the corresponding root-mean-square velocity are obtained by varying the Prandtl number Pr from 0.005 to 100 at a fixed Rayleigh number ${rm Ra}=10^5$. A few specific features of the data agree with the theory but the normalized moments of the kinetic energy dissipation rate, ${cal E}_n$, show a non-monotonic dependence for small Reynolds numbers before obeying the algebraic scaling prediction for the turbulent state. Implications and reasons for this behavior are discussed.
We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-B{e}nard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra=10^8 and the Prandtl number Pr=4.4 of an Oberbeck-Boussinesq flow with constant material parameters. The results show that most of the time, and for both velocity and temperature, the instantaneous profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010) agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles. Therefore, when averaging in the dynamical reference frames, which fluctuate with the respective instantaneous kinematic and thermal BL thicknesses, the obtained mean velocity and temperature profiles are also of Prandtl-Blasius type for nearly all horizontal positions. We further show that in certain situations the traditional definitions based on the time-averaged profiles can lead to unphysical BL thicknesses, while the dynamical method also in such cases can provide a well-defined BL thickness for both the kinematic and the thermal BLs.
We present mesoscale numerical simulations of Rayleigh-B{e}nard convection in a two-dimensional concentrated emulsion, confined between two parallel walls, heated from below and cooled from above, under the effect of buoyancy forces. The systems under study comprise finite-size droplets, whose concentration $Phi_0$ is varied, ranging from the dilute limit up to the point where the emulsion starts to be packed and exhibits non-Newtonian rheology. We focus on the characterisation of the convective heat transfer properties close to the transition from conductive to convective states. The convective flow is confined and heterogeneous, which causes the emulsion to exhibit concentration heterogeneities in space $phi_0(y)$, depending on the location in the wall-to-wall direction ($y$). With the aim of assessing quantitatively the heat transfer efficiency of such heterogeneous systems, we resort to a side-by-side comparison between the concentrated emulsion system and a single-phase (SP) system, whose local viscosity $eta^{mbox{SP}}(y)$ is suitably constructed from the shear rheology of the emulsion. Such comparison highlights that a suitable degree $Lambda$ of coarse-graining needs to be introduced in the local viscosity $eta_{Lambda}^{mbox{SP}}(y)$, in order for the single-phase system to attain the same heat transfer efficiency of the emulsion. Specifically, it is shown that a quantitative matching between the two systems is possible whenever the coarse-graining is performed over a scale of the order of the droplet size.