No Arabic abstract
Fundamental and higher harmonics of the AC magnetic susceptibility have been measured on a LaO_0.92F_0.08FeAs sample as a function of the temperature, at various amplitudes and frequencies of the AC magnetic field, with a small superimposed DC field parallel to the AC field. The granularity of the sample has been investigated and the inter-grain and intra-grain contributions have been clearly individuated looking at both the first and third harmonics. The vortex dynamics has been also analyzed, and a comparison with the magnetic behavior of both the MgB_2 and the cuprate superconductors has been performed. Some vortex dissipative phenomena, i.e. the thermally activated flux flow and the flux creep, have been detected in the presented measurements, similar to what obtained on YBCO. Nevertheless, although the general behavior is similar, several differences have been also evidenced between these different classes of superconductors, mainly in the third harmonics. We infer that different vortex dynamics have to be included into the analysis of the magnetic response in this iron-based new material.
By using Nuclear Magnetic Resonance and ac-susceptibility, the characteristic correlation times for the vortex dynamics, in an iron-based superconductor, have been derived. Upon cooling, the vortex dynamics displays a crossover consistent with a vortex glass transition. The correlation times, in the fast motions regime, merge onto a universal curve which is fit by the Vogel-Fulcher law, rather than by an Arrhenius law. Moreover, the pinning barrier shows a weak dependence on the magnetic field which can be heuristically justified within a fragile glass scenario. In addition, the glass freezing temperatures obtained by the two techniques merge onto the de Almeida-Thouless line. Finally the phase diagram for the mixed phase has been derived.
We analyse the phase transition between the Bragg Glass and the Disordered phase in the vortex lattice in type-II superconductors, both by analytical computations and experimental investigations. It is known that if the Peak Effect can be detected, a Bragg Glass/Disordered phase transition takes place. We show that, in some conditions, this transition can occur without the observation of the Peak Effect Phenomenon. We introduce a method based on the 3rd harmonics of the AC magnetic susceptibility to detect the transition also in these cases. Using this method, we obtain an experimental confirmation of the theoretical predictions on sphere shaped V3Si single crystals, in the high fields/low temperatures range too, where previous experimental studies failed to detect the Bragg/Disordered phase transition.
In this work we study by ac susceptibility measurements the evolution of the solid vortex lattice mobility under oscillating forces. Previous work had already shown that in YBCO single crystals, below the melting transition, a temporarily symmetric magnetic ac field (e.g. sinusoidal, square, triangular) can heal the vortex lattice (VL) and increase its mobility, but a temporarily asymmetric one (e.g. sawtooth) of the same amplitude can tear the lattice into a more pinned disordered state. In this work we present evidence that the mobility of the VL is reduced for large vortex displacements, in agreement with predictions of recent simulations. We show that with large symmetric oscillating fields both an initially ordered or an initially disordered VL configuration evolve towards a less mobile lattice, supporting the scenario of plastic flow.
We have investigated the ac susceptibility of the spin triplet superconductor Sr$_2$RuO$_4$ as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle $theta simeq 90^{circ}$), which is a prerequisite for inducing multiple superconducting phases in Sr$_2$RuO$_4$. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.
We study the different dynamical regimes of a vortex lattice driven by AC forces in the presence of random pinning via numerical simulations. The behaviour of the different observables is charaterized as a function of the applied force amplitude for different frequencies. We discuss the inconveniences of using the mean velocity to identify the depinnig transition and we show that instead, the mean quadratic displacement of the lattice is the relevant magnitude to characterize different AC regimes. We discuss how the results depend on the initial configuration and we identify new hysteretic effects which are absent in the DC driven systems.