No Arabic abstract
The pressure of QCD admits at high temperatures a factorization into purely perturbative contributions from hard thermal momenta, and slowly convergent as well as non-perturbative contributions from soft thermal momenta. The latter can be related to various effective gluon condensates in a dimensionally reduced effective field theory, and measured there through lattice simulations. Practical measurements of one of the relevant condensates have suffered, however, from difficulties in extrapolating convincingly to the continuum limit. In order to gain insight on this problem, we employ Numerical Stochastic Perturbation Theory to estimate the problematic condensate up to 4-loop order in lattice perturbation theory. Our results seem to confirm the presence of large discretization effects, going like $aln(1/a)$, where $a$ is the lattice spacing. For definite conclusions, however, it would be helpful to repeat the corresponding part of our study with standard lattice perturbation theory techniques.
We perform simulations of an effective theory of SU(2) Wilson lines in three dimensions. Our action includes a kinetic term, the one-loop perturbative potential for the Wilson line, a non-perturbative fuzzy-bag contribution and spatial gauge fields. We determine the phase diagram of the theory and confirm that, at moderately weak coupling, the non-perturbative term leads to eigenvalue repulsion in a finite region above the deconfining phase transition.
As a part of the project studying large $N_f$ QCD, the LatKMI Collaboration has been investigating the SU(3) gauge theory with four fundamental fermions (four-flavor QCD). The main purpose of studying four-flavor QCD is to provide a qualitative comparison to $N_f= 8$, $12$, $16$ QCD; however, a quantitative comparison to real-world QCD is also interesting. To make such comparisons more meaningful, it is desirable to use the same kind of lattice action consistently, so that qualitative difference of different theories are less affected by artifacts of lattice discretization. Here, we adopt the highly-improved staggered quark action with the tree-level Symanzik gauge action (HISQ/tree), which is exactly the same as the setup for our simulations for $SU(3)$ gauge theories with $N_f=8$, $12$ and $16$ fundamental fermions~cite{Aoki:2013xza, Aoki:2012eq, Aoki:2014oma}. In the next section, we show the fermion mass dependence of $F_pi$, $langlebar{psi}psirangle$, $M_pi$, $M_rho$, $M_N$ and their chiral extrapolations. In section 3, preliminary results of the measurement of the mass of the flavor-singlet scalar bound state will be reported.
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and determine the nature of the transition lines. In particular, we study the role played by the quartic scalar potential and by the gauge-group representation in determining the Higgs phases and the global and gauge symmetry-breaking patterns characterizing the different transitions. The general arguments are confirmed by numerical analyses of Monte Carlo results for two representative models that are expected to have qualitatively different phase diagrams and Higgs phases. We consider the model with $N_c = 3$, $N_f=2$ and with $N_c=2$, $N_f= 4$. This second case is interesting phenomenologically to describe some features of cuprate superconductors.
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effects are hardly visible in the effective Coulomb potential, scaling violations and a strong dependence on the choice of Gribov copy are observed. We obtain bounds for the Coulomb string tension that are in agreement with Zwanzigers inequality relating the Coulomb string tension to the Wilson string tension.
We study the finite-temperature electroweak phase transition of the minimal standard model within the four-dimensional SU(2) gauge-Higgs model. Monte Carlo simulations are performed for intermediate values of the Higgs boson mass in the range $50 lesssim M_H lesssim 100$GeV on a lattice with the temporal size $N_t=2$. The order of the transition is systematically examined using finite-size scaling methods. Behavior of the interface tension and the latent heat for an increasing Higgs boson mass is also investigated. Our results suggest that the first-order transition terminates around $M_H sim 80$GeV.