Do you want to publish a course? Click here

Disks around Brown Dwarfs in the Sigma Orionis Cluster

128   0   0.0 ( 0 )
 Added by Kevin Luhman
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a census of disks around brown dwarfs in the Sigma Ori cluster using all available images from IRAC onboard the Spitzer Space Telescope. To search for new low-mass cluster members with disks, we have measured photometry for all sources in the Spitzer images and have identified the ones that have red colors that are indicative of disks. We present 5 promising candidates, which may consist of 2 brown dwarfs, 2 stars with edge-on disks, and a low-mass protostar if they are bona fide members. Spectroscopy is needed to verify the nature of these sources. We have also used the Spitzer data to determine which of the previously known probable members of Sigma Ori are likely to have disks. By doing so, we measure disk fractions of ~40% and ~60% for low-mass stars and brown dwarfs, respectively. These results are similar to previous estimates of disk fractions in IC 348 and Cha I, which have roughly the same median ages as Sigma Ori (3 Myr). Finally, we note that our photometric measurements and the sources that we identify as having disks differ significantly from those of other recent studies that analyzed the same Spitzer images. For instance, previous work has suggested that the T dwarf S Ori 70 is redder than typical field dwarfs, which has been cited as possible evidence of youth and cluster membership. However, we find that this object is only slightly redder than the reddest field dwarfs in [3.6]-[4.5] (1.56+/-0.07 vs. 0.93-1.46). We measure a larger excess in [3.6]-[5.8] (1.75+/-0.21 vs. 0.87-1.19), but the flux at 5.8um may be overestimated because of the low signal-to-noise ratio of the detection. Thus, the Spitzer data do not offer strong evidence of youth and membership for this object, which is the faintest and coolest candidate member of Sigma Ori that has been identified to date.



rate research

Read More

We have carried out multi-epoch, time-series differential I-band photometry of a large sample of objects in the south-east region of the young (~3 Myr), nearby (~350 pc) sigma Orionis open cluster. A field of ~1000 arcmin^2 was monitored during four nights over a period of two years. Using this dataset, we have studied the photometric variability of twenty-eight brown dwarf cluster candidates with masses ranging from the stellar-substellar boundary down to the planetary-mass domain. We have found that about 50% of the sample show photometric variability on timescales from less than one hour to several days and years. The amplitudes of the I-band light curves range from less than 0.01 up to ~0.4 magnitudes. A correlation between the near-infrared excess in the K_s band, strong Halpha emission and large-amplitude photometric variation is observed. We briefly discuss how these results may fit the different scenarios proposed to explain the variability of cool and ultracool dwarfs (i.e. magnetic spots, patchy obscuration by dust clouds, surrounding accretion discs and binarity). Additionally, we have determined tentative rotational periods in the range 3 to 40 h for three objects with masses around 60 M_Jup, and the rotational velocity of 14+/-4 km/s for one of them.
457 - N. Lodieu 2009
(ABRIDGED) We have analysed the near-infrared photometric data from the Fourth Data Release (DR4) of the UKIRT Infrared Deep Sky Suvey (UKIDSS) Galactic Clusters Survey (GCS) to derive the cluster luminosity and mass functions, evaluate the extent of the cluster, and study the distribution and variability of low-mass stars and brown dwarfs down to the deuterium-burning limit. We have recovered most of the previously published members and found a total of 287 candidate members within the central 30 arcmin in the 0.5-0.009 Msun mass range, including new objects not previously reported in the literature. This new catalogue represents a homogeneous dataset of brown dwarf member candidates over the central 30 arcmin of the cluster. The expected photometric contamination by field objects with similar magnitudes and colours to sigma Orionis members is ~15%. We present evidence of variability at the 99.5% confidence level over ~yearly timescales in 10 member candidates that exhibit signs of youth and the presence of disks. The level of variability is low (<0.3 mag) and does not impact the derivation of the cluster luminosity and mass functions. Furthermore, we find a possible dearth of brown dwarfs within the central five arcmin of the cluster, which is not caused by a lower level of photometric sensitivity around the massive, O-type multiple star sigma Ori in the GCS survey. Using state-of-the-art theoretical models, we derived the luminosity and mass functions within the central 30 arcmin from the cluster centre, with completeness down to J = 19 mag, corresponding to masses ranging from 0.5 Msun down to the deuterium-burning mass boundary (~0.013 Msun). The mass function of sigma Orionis in this mass interval shows a power law index alpha = 0.5+/-0.2.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around $sigma$ Orionis members with $M_{ast}gtrsim0.1 M_{odot}$. Our observations cover the 1.33 mm continuum and several CO $J=2-1$ lines: out of 92 sources, we detect 37 in the mm continuum and six in $^{12}$CO, three in $^{13}$CO, and none in C$^{18}$O. Using the continuum emission to estimate dust mass, we find only 11 disks with $M_{rm dust}gtrsim10 M_{oplus}$, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5$times$ lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in $sigma$ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the $M_{rm dust}$-$M_{ast}$ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations $>1.5$ pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
We present an RI photometric survey covering an area of 430 arcmin^2 around the multiple star Sigma Orionis. The observations were conducted with the 0.8 m IAC-80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. R-I colour-magnitude diagram (I=14-20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2-4 Myr for the cluster, we find that these objects span a mass range from 0.35 Msol to 0.015 Msol. We have performed J-band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near-infrared excesses.
We present multi-wavelength optical and infrared photometry of 170 previously known low mass stars and brown dwarfs of the 5 Myr Collinder 69 cluster (Lambda Orionis). The new photometry supports cluster membership for most of them, with less than 15% of the previous candidates identified as probable non-members. The near infrared photometry allows us to identify stars with IR excesses, and we find that the Class II population is very large, around 25% for stars (in the spectral range M0 - M6.5) and 40% for brown dwarfs, down to 0.04 Msun, despite the fact that the H(alpha) equivalent width is low for a significant fraction of them. In addition, there are a number of substellar objects, classified as Class III, that have optically thin disks. The Class II members are distributed in an inhomogeneous way, lying preferentially in a filament running toward the south-east. The IR excesses for the Collinder 69 members range from pure Class II (flat or nearly flat spectra longward of 1 micron), to transition disks with no near-IR excess but excesses beginning within the IRAC wavelength range, to two stars with excess only detected at 24 micron. Collinder 69 thus appears to be at an age where it provides a natural laboratory for the study of primordial disks and their dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا