Do you want to publish a course? Click here

Evidence for the Sr2RuO4 intercalations in the Sr3Ru2O7 region of the Sr3Ru2O7-Sr2RuO4 eutectic system

336   0   0.0 ( 0 )
 Added by Shunichiro Kittaka
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although Sr3Ru2O7 has not been reported to exhibit superconductivity so far, ac susceptibility measurements revealed multiple superconducting transitions occurring in the Sr3Ru2O7 region cut from Sr3Ru2O7-Sr2RuO4 eutectic crystals. Based on various experimental results, some of us proposed the scenario in which Sr2RuO4 thin slabs with a few layers of the RuO2 plane are embedded in the Sr3Ru2O7 region as stacking faults and multiple superconducting transitions arise from the distribution of the slab thickness. To examine this scenario, we measured the resistivity along the ab plane (rho_ab) using a Sr3Ru2O7-region sample cut from the eutectic crystal, as well as along the c axis (rho_c) using the same crystal. As a result, we detected resistance drops associated with superconductivity only in rho_ab, but not in rho_c. These results support the Sr2RuO4 thin-slab scenario. In addition, we measured the resistivity of a single crystal of pure Sr3Ru2O7 with very high quality and found that pure Sr3Ru2O7 does not exhibit superconductivity down to 15 mK.



rate research

Read More

Superconducting behavior has been observed in the Sr2RuO4-Sr3Ru2O7 eutectic system as grown by the flux-feeding floating zone technique. A supercurrent flows across a single interface between Sr2RuO4 and Sr3Ru2O7 areas at distances that are far beyond those expected in a conventional proximity scenario. The current-voltage characteristics within the Sr3Ru2O7 macrodomain, as extracted from the eutectic, exhibit signatures of superconductivity in the bilayered ruthenate. Detailed microstructural, morphological and compositional analyses address issues on the concentration and the size of Sr2RuO4 inclusions within the Sr3Ru2O7 matrix. We speculate on the possibility of inhomogeneous superconductivity in the eutectic Sr3Ru2O7 and exotic pairing induced by the Sr2RuO4 inclusions.
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have also investigated the dependence of Hc2 on the angle between the field and the ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass model apparently fails to reproduce the angle dependence, particularly near H // c and at low temperatures. We propose that all of these charecteric features can be explained, at least in a qualitative fashion, on the basis of a theory by Sigrist and Monien that assumes surface superconductivity with a two-component order parameter occurring at the interface between Sr2RuO4 and Ru inclusions. This provides evidence of the chiral state postulated for the 1.5-K phase by several experiments.
The polarized Raman spectra of layered ruthenates of the Srn+1RunO3n+1 (n=1,2,3) Ruddlesden-Popper series were measured between 10 and 300 K. The phonon spectra of Sr3Ru2O7 and Sr4Ru3O10 confirmed earlier reports for correlated rotations of neighboring RuO6 octahedra within double or triple perovskite blocks. The observed Raman lines of Ag or B1g symmetry were assigned to particular atomic vibrations by considering the Raman modes in simplified structures with only one double or triple RuO6 layer per unit cell and by comparison to the predictions of lattice dynamical calculations for the real Pban and Pbam structures. Along with discrete phonon lines, a continuum scattering, presumably of electronic origin, is present in the zz, xx and xy, but not in the xy and zx spectra. Its interference with phonons results in Fano shape for some of the lines in the xx and xy spectra. The temperature dependencies of phonon parameters of Sr3Ru2O7 exhibit no anomaly between 10 and 300 K where no magnetic transition occurs. In contrast, two B1g lines in the spectra of Sr4Ru3O10, corresponding to oxygen vibrations modulating the Ru-O-Ru bond angle, show noticeable hardening with ferromagnetic ordering at 105 K, thus indicating strong spin-phonon interaction.
The understanding of the zero bias conductance peak (ZBCP) in the tunnelling spectra of S/N junctions involving d-wave cuprate superconductors has been important in the determination of the phase structure of the superconducting order parameter. In this context, the involvement of a p-wave superconductor such as Sr2RuO4 in tunnelling studies is indeed of great importance. We have recently succeeded in fabricating devices that enable S/N junctions forming at interfaces between Sr2RuO4 and Ru micro-inclusions in eutectic crystals to be investigated.3 We have observed a ZBCP and have interpreted it as due to the Andreev bound state, commonly seen in unconventional superconductors. Also we have proposed that the onset of the ZBCP may be used to delineate the phase boundary for the onset of a time reversal symmetry broken (TRSB) state within the superconducting state, which does not always coincide with the onset of the superconducting state. However, these measurements always involved two interfaces between Sr2RuO4 and Ru. In the present study, we have extended the previous measurements to obtain a deeper insight into the properties of a single interface between Sr2RuO4 and Ru.
We investigate the specific heat of ultra-pure single crystals of Sr2RuO4, a leading candidate of a spin-triplet superconductor. We for the first time obtained specific-heat evidence of the first-order superconducting transition below 0.8 K, namely divergent-like peaks and clear hysteresis in the specific heat at the upper critical field. The first-order transition occurs for all in-plane field directions. The specific-heat features for the first-order transition are found to be highly sensitive to sample quality; in particular, the hysteresis becomes totally absent in a sample with slightly lower quality. These thermodynamic observations provide crucial bases to understand the unconventional pair-breaking effect responsible for the first-order transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا