Do you want to publish a course? Click here

Flavorful $Z^prime$ signatures at LHC and ILC

231   0   0.0 ( 0 )
 Added by Nobuchika Okada
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

There are lots of new physics models which predict an extra neutral gauge boson, referred as Z-boson. In a certain class of these new physics models, the Z-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.

rate research

Read More

240 - Klaus Desch 2005
The prospects for the discovery and exploration of low-energy Supersymmetry at future colliders, the Large Hadron Collider (LHC) and the future international linear electron positron collider (ILC) are summarized. The focus is on the experimental techniques that will be used to discover superpartners and to measure their properties. Special attention is given to the question how the results from both machines could influence each other, in particular when they have overlapping running time.
The flavorful $Z^prime$ model with its couplings restricted to the left-handed second generation leptons and third generation quarks can potentially resolve the observed anomalies in $R_K$ and $R_{K^*}$. After examining the current limits on this model from various low-energy processes, we probe this scenario at 14 TeV high-luminosity run of the LHC using two complementary channels: one governed by the coupling of $Z$ to $b$-quarks and the other to muons. We also discuss the implications of the latest LHC high mass resonance searches in the dimuon channel on the model parameter space of our interest.
We describe the universal Monte-Carlo event generator WHIZARD. The program automatically computes complete tree-level matrix elements, integrates them over phase space, evaluates distributions of observables, and generates unweighted event samples that can be used directly in detector simulation. There is no principal limit on the process complexity; using current hardware, the program has successfully been applied to hard scattering processes with up to eight particles in the final state. Matrix elements are computed as helicity amplitudes, so spin and color correlations are retained. The Standard Model, the MSSM, and many alternative models such as Little Higgs, anomalous couplings, or effects of extra dimensions or noncommutative SM extensions have been implemented. Using standard interfaces to PDF, beamstrahlung, parton shower and hadronization programs, WHIZARD generates complete physical events and covers physics at hadron, lepton, and photon colliders.
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small stau-LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
100 - M. Berggren 2015
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا