Do you want to publish a course? Click here

Rapid spectral and timing variability of Be/X-ray binaries during type II outbursts

184   0   0.0 ( 0 )
 Added by Pablo Reig
 Publication date 2008
  fields Physics
and research's language is English
 Authors P. Reig




Ask ChatGPT about the research

We have investigated the spectral and timing variability of four accreting X-ray pulsars with Be-type companions during major X-ray outbursts. Different spectral states were defined according to the value of the X-ray colours and flux. Transient Be/X-ray binaries exhibit two branches in their colour-colour and colour-intensity diagrams: the horizontal branch corresponds to a low-intensity state and shows the larger fractional rms, similar to the the island state in atolls and horizontal branch in Z sources; the diagonal branch corresponds to a high-intensity state, in which the source spends about 75% of the total duration of the outburst. Despite the complexity of the power spectra due to the peaks of the pulse period and its harmonics, the aperiodic variability of Be/X-ray binaries can be described with a relatively low number of Lorentzian components. Some of these components can be associated with the same type of noise as that seen in low-mass X-ray binaries, although the characteristic frequencies are about one order of magnitude lower. The pattern traced by V 0332+53 results in a Z shaped track, similar to the low-mass Z sources, without the flaring branch. In contrast, the horizontal branch in 4U 0115+63, KS 1947+300 and EXO 2030+375 corresponds to a low/soft state, not seen in other types of X-ray binaries. The noise at very low frequencies follows a power law in V 0332+53 (like in LMXB Z) and it is flat-topped in 4U 0115+63, KS 1947+300 and EXO 2030+375 (like in LMXB atoll). V 0332+53 shows a noise component coupled with the periodic variability that it is not seen in any of the other three sources.



rate research

Read More

Current models that explain giant (type II) X-ray outbursts in Be/X-ray binaries (BeXB), are based on the idea of highly distorted disks. They are believed to occur when a misaligned and warped disk becomes eccentric, allowing the neutron star to capture a large amount of material. The BeXB 4U 0115+63 underwent two major outbursts in 2015 and 2017. Our aim is to investigate whether the structural changes in the disk expected during type II outbursts can be detected through optical polarimetry. We present the first optical polarimetric observations and new optical spectra of the BeXB 4U 0115+63 covering the period 2013-2017. We study in detail the shape of the H$alpha$ line profile and the polarization parameters before, during, and after the occurrence of a type II X-ray outburst. We find significant changes in polarization degree and polarization angle and highly distorted line profiles during the 2017 X-ray outburst. The degree of polarization decreased by $sim$ 1%, while the polarization angle, which is supposed to be related with the disk orientation, first increased by $sim 10^{circ}$ in about two months and then decreased by a similar amount and on a similar timescale once the X-ray activity ceased.We interpret the polarimetric and spectroscopic variability as evidence for the presence of a warped disk.
58 - P. Reig 2005
We have used INTEGRAL & RXTE data to investigate the timing properties of the source in correlation with its spectral states as defined by different positions in the colour-colour diagram. The source shows two distinct branches in the colour-colour diagram that resemble those of the Z sources. The hard branch (similar to the horizontal branch of Z sources) is characterised by a low-amplitude change of the hard colour compared to the change in the soft colour. In the soft branch (analogue to the normal branch) the amplitude of variability of the hard colour is about three times larger than that of the soft colour. As the count rate decreases the source moves up gradually through the soft to the hard branch. The aperiodic variability (excluding the pulse noise) consists of band-limited noise (represented by three broad Lorentzian components) and two QPOs at 0.05 Hz and 0.22 Hz. The strength of the lower frequency QPO increases as the source approaches the hard branch (similar to HBOs in Z sources). The higher frequency QPO reaches maximum significance when the source is in the middle of the branch (like NBOs). We have performed the first measurements of phase lags in the band limited noise below 8 Hz in an accreting X-ray pulsar and found that soft lags dominate at high frequencies. Above the pulse frequency (0.23 Hz), the amplitude of the lag increases as the X-ray flux increases. The Z topology appears to be a signature of the neutron star binaries as it is present in all types of neutron-star binaries (Z, atoll and, as we show here, in accreting pulsars as well). However, the motion along this track, the time scales through the different branches of the diagram and the aperiodic variability associated with portions of the Z track differ for each subclass of neutron-star binary.
The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous studies on the correlated timing and spectral variability of these systems, very little work has been done on high-mass X-ray binaries, the third major type of X-ray binaries. The main goal of this work is to investigate whether Be accreting X-ray pulsars display source states and characterise those states through their spectral and timing properties. We have made a systematic study of the power spectra, energy spectra and X-ray hardness-intensity diagrams of nine Be/X-ray pulsars. The evolution of the timing and spectral parameters were monitored through changes over two orders of magnitude in luminosity. We find that Be/X-ray pulsars trace two different branches in the hardness-intensity diagram: the horizontal branch corresponds to a low-intensity state of the source and it is characterised by fast colour and spectral changes and high X-ray variability. The diagonal branch is a high-intensity state that emerges when the X-ray luminosity exceeds a critical limit. The photon index anticorrelates with X-ray flux in the horizontal branch but correlates with it in the diagonal branch. The correlation between QPO frequency and X-ray flux reported in some pulsars is also observed if the peak frequency of the broad-band noise that accounts for the aperiodic variability is used. The two branches may reflect two different accretion modes, depending on whether the luminosity of the source is above or below a critical value. This critical luminosity is mainly determined by the magnetic field strength, hence it differs for different sources.
Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth that occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient, the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.
304 - Sachindra Naik 2013
We present results from a study of broadband timing and spectral properties of EXO 2030+375 using a Suzaku observation. Pulsations with a period of 41.41 s and strong energy dependent pulse profiles were clearly detected up to ~100 keV. Narrow dips are seen in the profiles up to ~70 keV. Presence of prominent dips at several phases in the profiles up to such high energy ranges were not seen before. At higher energies, these dips gradually disappeared and the profile appeared single-peaked. The 1.0-200.0 keV broad-band spectrum is found to be well described by a partial covering high energy cut-off power-law model. Several low energy emission lines are also detected in the pulsar spectrum. We fitted the spectrum using neutral as well as partially ionized absorbers along with above continuum model yielding similar parameter values. The partial covering with partially ionized absorber resulted into marginally better fit. The spectral fitting did not require any cyclotron feature in the best fit model. To investigate the changes in spectral parameters at dips, we carried out pulse-phase-resolved spectroscopy. During the dips, the value of additional column density was estimated to be high compared to other pulse phases. While using partially ionized absorber, the value of ionization parameter is also higher at the dips. This may be the reason for the presence of dips up to higher energies. No other spectral parameters show any systematic variation with pulse phases of the pulsar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا