Determination of volume, shape and refractive index of individual blood platelets


Abstract in English

Light scattering patterns (LSP) of blood platelets were theoretically and experimentally analyzed. We used spicular spheroids as a model for the platelets with pseudopodia. The discrete dipole approximation was employed to simulate light scattering from an individual spicular spheroid constructed from a homogeneous oblate spheroid and 14 rectilinear parallelepipeds rising from the cell centre. These parallelepipeds have a weak effect on the LSP over the measured angular range. Therefore, a homogeneous oblate spheroid was taken as a simplified optical model for platelets. Using the T-matrix method, we computed the LSP over a range of volumes, aspect ratios and refractive indices. Measured LSPs of individual platelets were compared one by one with the theoretical set and the best fit was taken to characterize the measured platelets, resulting in distributions of volume, aspect ratio and refractive index.

Download