Do you want to publish a course? Click here

Searching for Nambu-Goldstone Bosons at the LHC

118   0   0.0 ( 0 )
 Added by Terrance Figy
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Phenomenological implications of a minimal extension to the Standard Model are considered, in which a Nambu-Goldstone boson emerges from the spontaneous breaking of a global U(1) symmetry. This is felt only by a scalar field which is a singlet under all Standard Model symmetries, and possibly by neutrinos. Mixing between the Standard Model Higgs boson field and the new singlet field may lead to predominantly invisible Higgs boson decays. The natural region in the Higgs boson mass spectrum is determined, where this minimally extended Standard Model is a valid theory up to a high scale related with the smallness of neutrino masses. Surprisingly, this region may coincide with low visibility of all Higgs bosons at the LHC. Monte-Carlo simulation studies of this nightmare situation are performed and strategies to search for such Higgs boson to invisible (Nambu-Goldstone boson) decays are discussed. It is possible to improve the signal-to-background ratio by looking at the distribution of either the total transverse momentum of the leptons and the missing transverse momentum, or by looking at the distribution of the azimuthal angle between the missing transverse momentum and the momentum of the lepton pair for the Z- and Higgs-boson associated production. We also study variations of the model with non-Abelian symmetries and present approximate formulae for Higgs boson decay rates. Searching for Higgs bosons in such a scenario at the LHC would most likely be solely based on Higgs to invisible decays.



rate research

Read More

The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an inverted slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.
We study numerically the spatial dynamics of light in periodic square lattices in the presence of a Kerr term, emphasizing the peculiarities stemming from the nonlinearity. We find that, under rather general circumstances, the phase pattern of the stable ground state depends on the character of the nonlinearity: the phase is spatially uniform if it is defocusing whereas in the focusing case, it presents a chess board pattern, with a difference of $pi$ between neighboring sites. We show that the lowest lying perturbative excitations can be described as perturbations of the phase and that finite-sized structures can act as tunable metawaveguides for them. The tuning is made by varying the intensity of the light that, because of the nonlinearity, affects the dynamics of the phase fluctuations. We interpret the results using methods of condensed matter physics, based on an effective description of the optical system. This interpretation sheds new light on the phenomena, facilitating the understanding of individual systems and leading to a framework for relating different problems with the same symmetry. In this context, we show that the perturbative excitations of the phase are Nambu-Goldstone bosons of a spontaneously broken $U(1)$ symmetry.
Motivated by recent constructions of TeV-scale strongly-coupled dynamics, either associated with the Higgs sector itself as in pseudo-Nambu-Goldstone boson (pNGB) Higgs models or in theories of asymmetric dark matter, we show that stable solitonic Q- balls can be formed from light pion-like pNGB fields carrying a conserved global quantum number in the presence of the Higgs field. We focus on the case of thick-wall Q-balls, where solutions satisfying all constraints are shown to exist over a range of parameter values. In the limit that our approximations hold, the Q-balls are weakly bound and parametrically large, and the form of the interactions of the light physical Higgs with the Q-ball is determined by the breaking of scale symmetry.
The idea to have Higgs doublets as pseudo Nambu-Goldstone (PsNG) multiplet is examined in the framework of supersymmetric E_6 unified theory. We show that extra PsNG multiplets other than the expected Higgs doublets necessarily appear in the E_6 case. If we demand that the extra PsNG multiplets neither disturb the gauge coupling unification nor make the color gauge coupling diverge before unification occurs, only possibility for the extra PsNG is 10+bar{10} of SU(5). This is realized when the symmetry breaking E_6 to SO(10) occurs in the phi(27)+phi(bar{27}) sector while E_6 to SU(4)_Ctimes SU(2)_Ltimes U(1)times U(1) in the Sigma(78) sector. The existence of 10+bar{10} multiplets with mass around 1 TeV is therefore a prediction of this E_6 PsNG scenario. Implication of their existence on the proton decay is also discussed.
We consider chiral perturbation theory in a finite volume and in a mixed regime of quark masses. We take N_l light quarks near the chiral limit, in the so-called epsilon-regime, while the remaining N_h quarks are heavier and in the standard p-regime. We compute in this new mixed regime the finite-size scaling of the light meson correlators in the scalar, pseudoscalar, vector and axial vector channels.Using the replica method, we easily extend our results to the partially quenched theory. With the help of our results, lattice QCD simulations with 2+1 flavors can safely investigate pion physics with very light up and down quark masses even in the region where the pions correlation length overcomes the size of the space-time lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا