Do you want to publish a course? Click here

Radiative Hydrodynamical Studies of Irradiated Atmospheres

149   0   0.0 ( 0 )
 Added by Ian Dobbs-Dixon
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transiting planets provide a unique opportunity to study the atmospheres of extra-solar planets. Radiative hydrodynamical models of the atmosphere provide a crucial link between the physical characteristics of the atmosphere and the observed properties. Here I present results from 3D simulations which solve the full Navier-Stokes equations coupled to a flux-limited diffusion treatment of radiation transfer for planets with 1, 3, and 7 day periods. Variations in opacity amongst models leads to a variation in the temperature differential across the planet, while atmospheric dynamics becomes much more variable at longer orbital periods. I also present 3D radiative simulations illustrating the importance of distinguishing between optical and infrared opacities.



rate research

Read More

144 - Tristan Guillot 2010
The evolution of stars and planets is mostly controlled by the properties of their atmosphere. This is particularly true in the case of exoplanets close to their stars, for which one has to account both for an (often intense) irradiation flux, and from an intrinsic flux responsible for the progressive loss of the inner planetary heat. The goals of the present work are to help understanding the coupling between radiative transfer and advection in exoplanetary atmospheres and to provide constraints on the temperatures of the deep atmospheres. This is crucial in assessing whether modifying assumed opacity sources and/or heat transport may explain the inflated sizes of a significant number of giant exoplanets found so far. I use a simple analytical approach inspired by Eddingtons approximation for stellar atmospheres to derive a relation between temperature and optical depth valid for plane-parallel static grey atmospheres which are both transporting an intrinsic heat flux and receiving an outer radiation flux. The model is parameterized as a function of mean visible and thermal opacities, respectively. The model is shown to reproduce relatively well temperature profiles obtained from more sophisticated radiative transfer calculations of exoplanetary atmospheres. It naturally explains why a temperature inversion (stratosphere) appears when the opacity in the optical becomes significant compared to that in the infrared. I further show that the mean equivalent flux (proportional to T^4) is conserved in the presence of horizontal advection on constant optical depth levels. This implies with these hypotheses that the deep atmospheric temperature used as outer boundary for the evolution models should be calculated from models pertaining to the entire planetary atmosphere, not from ones that are relevant to the day side or to the substellar point. In these conditions, present-day models yield deep temperatures that are ~1000K too cold to explain the present size of planet HD 209458b. An tenfold increase in the infrared to visible opacity ratio would be required to slow the planetary cooling and contraction sufficiently to explain its size. However, the mean equivalent flux is not conserved anymore in the presence of opacity variations, or in the case of non-radiative vertical transport of energy: The presence of clouds on the night side or a downward transport of kinetic energy and its dissipation at deep levels would help making the deep atmosphere hotter and may explain the inflated sizes of giant exoplanets.
175 - Ian Dobbs-Dixon , Eric Agol 2012
We present a detailed three-dimensional radiative-hydrodynamical simulation of the well known irradiated exoplanet HD189733b. Our model solves the fully compressible Navier-Stokes equations coupled to wavelength-dependent radiative transfer throughout the entire planetary envelope. We provide detailed comparisons between the extensive observations of this system and predictions calculated directly from the numerical models. The atmospheric dynamics is characterized by supersonic winds that fairly efficiently advect energy from the dayside to the nightside. Super-rotating equatorial jets form for a wide range of pressures from 10^-5 to 10 bars while counter rotating jets form at higher latitudes. Calculated transit spectrum agree well with the data from the infrared to the UV including the strong Rayleigh scattering seen at short wavelength, though we slightly under-predict the observations at wavelengths shorter then ~0.6 microns. Our predicted emission spectrum agrees remarkably well at 5.8 and 8 microns, but slightly over-predicts the emission at 3.6 and 4.5 microns when compared to the latest analysis by Knutson et. al (2012). Our simulated IRAC phasecurves agree fairly well with the amplitudes of variations, shape, and phases of minimum and maximum flux. However, we over-predict the peak amplitude at 3.6 and 4.5 microns, and slightly under-predict the location of the phasecurve maximum and minimum. These simulations include, for the first time in a multi-dimensional simulation, a strong Rayleigh scattering component to the absorption opacity, necessary to explain observations in the optical and UV. The agreement between our models and observations suggest that including the effects of condensates in simulations as the dominant form of opacity will be very important in future models.
73 - N. A. Silantev 2017
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
106 - Tim Waters , Daniel Proga , 2021
The mechanism of thermal driving for launching mass outflows is interconnected with classical thermal instability (TI). In a recent paper, we demonstrated that as a result of this interconnectedness, radial wind solutions of X-ray heated flows are prone to becoming clumpy. In this paper, we first show that the Bernoulli function determines whether or not the entropy mode can grow due to TI in dynamical flows. Based on this finding, we identify a critical `unbound radius beyond which TI should accompany thermal driving. Our numerical disk wind simulations support this result and reveal that clumpiness is a consequence of buoyancy disrupting the stratified structure of steady state solutions. Namely, instead of a smooth transition layer separating the highly ionized disk wind from the cold phase atmosphere below, hot bubbles formed from TI rise up and fragment the atmosphere. These bubbles first appear within large scale vortices that form below the transition layer, and they result in the episodic production of distinctive cold phase structures referred to as irradiated atmospheric fragments (IAFs). Upon interacting with the wind, IAFs advect outward and develop extended crests. The subsequent disintegration of the IAFs takes place within a turbulent wake that reaches high elevations above the disk. We show that this dynamics has the following observational implications: dips in the absorption measure distribution are no longer expected within TI zones and there can be a less sudden desaturation of X-ray absorption lines such as OVIII as well as multiple absorption troughs in FeXXVK.
We show that under certain circumstances the differences between the absorption mean and Planck mean opacities can lead to multiple solutions for an LTE atmospheric structure. Since the absorption and Planck mean opacities are not expected to differ significantly in the usual case of radiative equilibrium, non-irradiated atmospheres, the most interesting situations where the effect may play a role are strongly irradiated stars and planets, and also possibly structures where there is a significant deposition of mechanical energy, such as stellar chromospheres and accretion disks. We have presented an illustrative example of a strongly irradiated giant planet where the bifurcation effect is predicted to occur for a certain range of distances from the star.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا