Let $Gamma$ be a co-compact Fuchsian group of isometries on the Poincare disk $DD$ and $Delta$ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction $f$ of $Delta$, equivariant by $Gamma$ with real eigenvalue $lambda=-s(1-s)$, where $s={1/2}+ it$, admits an integral representation by a distribution $dd_{f,s}$ (the Helgason distribution) which is equivariant by $Gamma$ and supported at infinity $partialDD=SS^1$. The geodesic flow on the compact surface $DD/Gamma$ is conjugate to a suspension over a natural extension of a piecewise analytic map $T:SS^1toSS^1$, the so-called Bowen-Series transformation. Let $ll_s$ be the complex Ruelle transfer operator associated to the jacobian $-sln |T|$. M. Pollicott showed that $dd_{f,s}$ is an eigenfunction of the dual operator $ll_s^*$ for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction $psi_{f,s}$ of $ll_s$ for the eigenvalue 1, given by an integral formula [ psi_{f,s} (xi)=int frac{J(xi,eta)}{|xi-eta|^{2s}} dd_{f,s} (deta), ] oindent where $J(xi,eta)$ is a ${0,1}$-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface $DD/Gamma$.