Do you want to publish a course? Click here

The Distribution of Basaltic Asteroids in the Main Belt

119   0   0.0 ( 0 )
 Added by Nicholas Moskovitz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the observational results of a survey designed to target and detect asteroids whose colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a < 2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5 < a < 2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ~100 differentiated parent bodies represented in meteorite collections have been battered to bits [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Mantle material in the Main Belt: Battered to bits? Met. & Planet. Sci. 31, 607].



rate research

Read More

213 - A. N. Heinze , Joseph Trollo , 2019
Digital tracking enables telescopes to detect asteroids several times fainter than conventional techniques. We describe our optimized methodology to acquire, process, and interpret digital tracking observations, and we apply it to probe the apparent magnitude distribution of main belt asteroids fainter than any previously detected from the ground. All-night integrations with the Dark Energy Camera (DECam) yield 95% completeness at $R$ magnitude 25.0, and useful sensitivity to $R=25.6$ mag when we use an analytical detection model to correct flux overestimation bias. In a single DECam field observed over two nights, we detect a total of 3234 distinct asteroids, of which 3123 are confirmed on both nights. At opposition from the Sun, we find a sky density of $697 pm 15$ asteroids per square degree brighter than $R = 25.0$ mag, and $1031 pm 23$ brighter than $R = 25.6$ mag. We agree with published results for the sky density and apparent magnitude distribution of asteroids brighter than $R=23$ mag. For a power law defined by $dN/dR propto 10^{alpha R}$, we find marginally acceptable fits with a constant slope $alpha = 0.28 pm 0.02$ from $R=20$ to 25.6 mag. Better fits are obtained for a broken power law with $alpha=0.218 pm 0.026$ for $R=20$ to 23.5 mag, steepening to $alpha=0.340 pm 0.025$ for $R = 23.5$ to 25.6 mag. The constant or steepening power law indicates asteroids fainter than $R = 23.5$ mag are abundant, contrary to some previous claims but consistent with theory.
The recent discovery of the first V-type asteroid in the middle belt, (21238) 1995WV7, located at ~2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ~2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by drifting in semi-major axis due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability of an asteroid of given diameter D to evolve from the Vesta family and to cross over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability of having evolved through this mechanism due to its large size (~5 km). However, the mechanism might explain the orbit of smaller bodies like (40521) 1999RL95 (~3 km), provided that we assume that the Vesta family formed > 3.5 Gy ago. We estimate that about 10% or more of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 90% must have a different origin.
149 - L. Molnar , A. Pal , K. Sarneczky 2017
We present the K2 light curves of a large sample of untargeted Main Belt asteroids (MBAs) detected with the Kepler space telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility to obtain precise, uninterrupted light curves of a large number of MBAs and thus to determine unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations indicating that the latter are biased towards shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.
Unlike NASAs original Kepler Discovery Mission, the renewed K2 Mission will stare at the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effect of apparent minor planet encounters. Here we investigate the effects of asteroid encounters on photometric precision using a sub-sample of the K2 Engineering data taken in February, 2014. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission, that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.
88 - S. Ieva , E. Dotto , D. Lazzaro 2018
The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا