No Arabic abstract
The first aim of the present paper, is to establish strong approximations of the uniform non-overlapping k-spacings process extending the results of Aly et al. (1984). Our methods rely on the invariance principle in Mason and van Zwet (1987). The second goal, is to generalize the Dindar (1997) results for the increments of the spacings quantile process to the uniforme non-overlapping k-spacings quantile process. We apply the last result to characterize the limit laws of functionals of the increments k-spacings quantile process.
For $1 le p < infty$, the Frechet $p$-mean of a probability distribution $mu$ on a metric space $(X,d)$ is the set $F_p(mu) := {arg,min}_{xin X}int_{X}d^p(x,y), dmu(y)$, which is taken to be empty if no minimizer exists. Given a sequence $(Y_i)_{i in mathbb{N}}$ of independent, identically distributed random samples from some probability measure $mu$ on $X$, the Frechet $p$-means of the empirical measures, $F_p(frac{1}{n}sum_{i=1}^{n}delta_{Y_i})$ form a sequence of random closed subsets of $X$. We investigate the senses in which this sequence of random closed sets and related objects converge almost surely as $n to infty$.
We consider the connections among `clumped residual allocation models (RAMs), a general class of stick-breaking processes including Dirichlet processes, and the occupation laws of certain discrete space time-inhomogeneous Markov chains related to simulated annealing and other applications. An intermediate structure is introduced in a given RAM, where proportions between successive indices in a list are added or clumped together to form another RAM. In particular, when the initial RAM is a Griffiths-Engen-McCloskey (GEM) sequence and the indices are given by the random times that an auxiliary Markov chain jumps away from its current state, the joint law of the intermediate RAM and the locations visited in the sojourns is given in terms of a `disordered GEM sequence, and an induced Markov chain. Through this joint law, we identify a large class of `stick breaking processes as the limits of empirical occupation measures for associated time-inhomogeneous Markov chains.
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, forcing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic approximation. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
Marcinkiewicz strong law of large numbers, ${n^{-frac1p}}sum_{k=1}^{n} (d_{k}- d)rightarrow 0 $ almost surely with $pin(1,2)$, are developed for products $d_k=prod_{r=1}^s x_k^{(r)}$, where the $x_k^{(r)} = sum_{l=-infty}^{infty}c_{k-l}^{(r)}xi_l^{(r)}$ are two-sided linear process with coefficients ${c_l^{(r)}}_{lin mathbb{Z}}$ and i.i.d. zero-mean innovations ${xi_l^{(r)}}_{lin mathbb{Z}}$. The decay of the coefficients $c_l^{(r)}$ as $|l|toinfty$, can be slow enough for ${x_k^{(r)}}$ to have long memory while ${d_k}$ can have heavy tails. The long-range dependence and heavy tails for ${d_k}$ are handled simultaneously and a decoupling property shows the convergence rate is dictated by the worst of long-range dependence and heavy tails, but not their combination. The results provide a means to estimate how much (if any) long-range dependence and heavy tails a sequential data set possesses, which is done for real financial data. All of the stocks we considered had some degree of heavy tails. The majority also had long-range dependence. The Marcinkiewicz strong law of large numbers is also extended to the multivariate linear process case.
We give a new proof of the classical Central Limit Theorem, in the Mallows ($L^r$-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related to this metric. The key is to analyse the case where equality holds. We provide some results concerning rates of convergence. We also consider convergence to stable distributions, and obtain a bound on the rate of such convergence.