Do you want to publish a course? Click here

The trigger of the AGB superwind: the importance of carbon

87   0   0.0 ( 0 )
 Added by Eric Lagadec
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The driving mechanism of the AGB superwind has become controversial in recent years. The efficacy of dust-driven mass loss has been queried. Spitzer observation of AGB stars in Local Group Galaxies show the surprising result that at low metallicity, AGB mass loss occurs at low luminosity, possibly lower than in the Galaxy, but only for carbon-rich stars. Oxygen-rich stars in the Galaxy and in lower metallicity galaxies have similar mass-loss rates only at high luminosities. To explain this dichotomy, we propose that the superwind has a dual trigger. The superwind starts either when sufficient excess carbon builds up for efficient formation of carbonaceous dust (which we propose occurs when $X_{rm CO} = rm (C - O)/ O_odot = 0.1$), or when the luminosity reaches a value sufficient for a silicate-dust-driven wind (proposed at $L = 10^4 Z^{-4/3} rm L_odot)$. We show that this dual trigger fits the current observational constraints: the luminosity at which the superwind begins, and the predominance of carbon superwind star at low metallicity. We use stellar evolution models to check the consistency of our explanations and present detailed predictions of the luminosities at which the superwind is triggered for different metallicities and initial stellar masses.



rate research

Read More

Previous determinations of the oxygen isotopic ratios in AGB carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in LTE with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M_o) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the FDU according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies. Excluding these peculiar stars, AGB carbon stars occupy the same region as pre-solar type I oxide grains in a 17O/16O vs. 18O/16O diagram, showing little spread. This reinforces the idea that these grains were probably formed in low-mass stars during the previous O-rich phases.
We present new optical images ($B$, $V$, and H$alpha$) of the archetypical starburst/superwind galaxy M82 obtained with the 8.2 m Subaru Telescope to reveal new detailed structures of the superwind-driven nebula and the high-latitude dark lanes. The emission-line nebula is decomposed into (1) a ridge-dominated component comprising numerous filament/loop sub-structures whose overall morphology appears as a pair of narrow cylinders, and (2) a diffuse component extended over much wider opening angle from the nucleus. We suggest that these two components have different origins. The ridge-dominated component appears as a pair of cylinders rather than a pair of cones. Since this morphological property is similar to that of hot plasma probed by soft X-ray, this component seems to surround the hot plasma. On the other hand, the diffuse component may arise from dust grains which scatter stellar light from the galaxy. Since inner region of this component is seen over the prominent ^^ ^^ X-shaped dark lanes streaming out from the nuclear region and they can be reproduced as a conical distribution of dust grains, there seems to be a dusty cold outflow as well as the hot one probed by soft X-ray and shock-excited optical emission lines. If this is the case, the presence of such high-latitude dust grains implies that neutral gaseous matter is also blown out during the course of the superwind activity.
141 - C. Abia , K. Cunha , S. Cristallo 2015
Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluorine. Nowadays there is not a consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Using new spectroscopic tools and LTE spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J and SC spanning a wide range of metallicities. On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling in a different way the radiative/convective interface at the base of the convective envelope. New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.
100 - Ananda Hota JAP 2004
We present multifrequency radio continuum as well as HI observations of the superwind galaxy NGC1482, with both the GMRT and the VLA. This galaxy has a remarkable hourglass-shaped optical emission line outflow as well as bi-polar soft X-ray bubbles on opposite sides of the galactic disk. The low-frequency, lower-resolution radio observations show a smooth structure. From the non-thermal emission, we estimate the available energy in supernovae, and examine whether this would be adequate to drive the observed superwind outflow. The high-frequency, high-resolution radio images of the central starburst region located at the base of the superwind bi-cone shows one prominent peak and more extended emission with substructure. This image has been compared with the infrared, optical red-continuum, H_alpha, and, soft and hard X-ray images from Chandra. The peak of infrared emission is the only feature which is coincident with the prominent radio peak, and possibly defines the centre of the galaxy. The HI observations with the GMRT show two blobs of emission on opposite sides of the central region. These are rotating about the centre of the galaxy and are located at ~2.4 kpc from it. In addition, these observations also reveal a multicomponent HI-absorption profile against the central region of the radio source, with a total width of ~250 km/s. The extreme blue- and red-shifted absorption components are at 1688 and 1942 km/s respectively, while the peak absorption is at 1836 km/s. This is consistent with the heliocentric systemic velocity of 1850+/-20 km/s, estimated from a variety of observations. We discuss possible implications of these results.
130 - R. Lombaert , L. Decin , P. Royer 2016
Context. The recent detection of warm H$_2$O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H$_2$O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H$_2$O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H$_2$O molecules in the intermediate wind. Aims. We aim to determine the properties of H$_2$O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H$_2$O formation pathway. Methods, Results, and Conclusions. See paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا