The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally different in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.