Do you want to publish a course? Click here

Mid-Infrared Spectroscopic Properties of Ultra-Luminous Infrared Quasars

98   0   0.0 ( 0 )
 Added by Chen Cao
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ~ 5 to 30um, including the spectral slopes, 6.2um PAH emission strengths and [NeII] 12.81um luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find that the colour index alpha(30, 15) is a good indicator of the relative contribution of starbursts to AGNs for all QSOs. Correlations between the [NeII] 12.81um and PAH 6.2um luminosities and those between the [NeII], PAH with 60um luminosities for ULIRGs and IR QSOs indicate that both [NeII] and PAH luminosities are approximate star formation rate indicators for IR QSOs and starburst-dominated galaxies; the scatters are, however, quite large (~ 0.7 to 0.8 dex). Finally the correlation between the EW(PAH 6.2um) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

rate research

Read More

We present Spitzer InfraRed Spectrograph (IRS) low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z ~ 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signatures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3micron and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.
We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 < z < 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L_IR > 10^11.5L_sun). With these measurements we trace the dust continuum, far-IR atomic line emission, in particular [CII],157.7microns, as well as the molecular gas of z~0.3 (U)LIRGs and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L_CII/L_FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-$z$ star forming galaxies. Using our sample to bridge local and high-z [CII] observations, we find that the majority of galaxies at all redshifts and all luminosities follow a L_CII-L_FIR relation with a slope of unity, from which local ULIRGs and high-z AGN dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L_CII/L_FIR ratio and the far-IR color L_60/L_100 observed in the local Universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L_CII/L_FIR at any epoch. Intermediate redshift ULIRGs are also characterised by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L_CII/L_FIR ratios, the moderate star formation efficiencies (L_LIR/L_CO or L_IR/M_gas) and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ~ 0.3.
218 - D. Farrah 2010
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.
63 - E. Valiante , D. Lutz , E. Sturm 2007
We present rest frame mid-infrared spectroscopy of a sample of 13 submillimeter galaxies, obtained using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The sample includes exclusively bright objects from blank fields and cluster lens assisted surveys that have accurate interferometric positions. We find that the majority of spectra are well fitted by a starburst template or by the superposition of PAH emission features and a weak mid-infrared continuum, the latter a tracer of Active Galactic Nuclei (including Compton-thick ones). We obtain mid-infrared spectroscopic redshifts for all nine sources detected with IRS. For three of them the redshifts were previously unknown. The median value of the redshift distribution is z~2.8 if we assume that the four IRS non-detections are at high redshift. The median for the IRS detections alone is z~2.7. Placing the IRS non-detections at similar redshift would require rest frame mid-IR obscuration larger than is seen in local ULIRGs. The rest frame mid-infrared spectra and mid- to far-infrared spectral energy distributions are consistent with those of local ultraluminous infrared galaxies, but scaled-up further in luminosity. The mid-infrared spectra support the scenario that submillimeter galaxies are sites of extreme star formation, rather than X-ray-obscured AGN, and represent a critical phase in the formation of massive galaxies.
We present mid-infrared spectroscopy obtained with the Spitzer Space Telescope of a sample of 11 optically faint, infrared luminous galaxies selected from a Spitzer MIPS 70um imaging survey of the NDWFS Bootes field. These are the first Spitzer IRS spectra presented of distant 70um-selected sources. All the galaxies lie at redshifts 0.3<z<1.3 and have very large infrared luminosities of L_IR~ 0.1-17 x 10^12 solar luminosities. Seven of the galaxies exhibit strong emission features attributed to polycyclic aromatic hydrocarbons (PAHs). The average IRS spectrum of these sources is characteristic of classical starburst galaxies, but with much larger infrared luminosities. The PAH luminosities of L(7.7) ~ 0.4 - 7 x 10^11 solar luminosities imply star formation rates of ~ 40 - 720 solar masses per year. Four of the galaxies show deep 9.7um silicate absorption features and no significant PAH emission features (6.2um equivalent widths < 0.03um). The large infrared luminosities and low f70/f24 flux density ratios suggests that these sources have AGN as the dominant origin of their large mid-infrared luminosities, although deeply embedded but luminous starbursts cannot be ruled out. If the absorbed sources are AGN-dominated, a significant fraction of all far-infrared bright, optically faint sources may be dominated by AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا