Do you want to publish a course? Click here

Conformal Field Theory and Statistical Mechanics

354   0   0.0 ( 0 )
 Added by John Cardy
 Publication date 2008
  fields Physics
and research's language is English
 Authors John Cardy




Ask ChatGPT about the research

The lectures provide a pedagogical introduction to the methods of CFT as applied to two-dimensional critical behaviour.



rate research

Read More

An interesting connection between the Regge theory of scattering, the Veneziano amplitude, the Lee-Yang theorems in statistical mechanics and nonextensive Renyi entropy is addressed. In this scheme the standard entropy and the Renyi entropy appear to be different limits of a unique mathematical object. This framework sheds light on the physical origin of nonextensivity. A non trivial application to spin glass theory is shortly outlined.
Statistical mechanics of 1D multivalent Coulomb gas may be mapped onto non-Hermitian quantum mechanics. We use this example to develop instanton calculus on Riemann surfaces. Borrowing from the formalism developed in the context of Seiberg-Witten duality, we treat momentum and coordinate as complex variables. Constant energy manifolds are given by Riemann surfaces of genus $ggeq 1$. The actions along principal cycles on these surfaces obey ODE in the moduli space of the Riemann surface known as Picard-Fuchs equation. We derive and solve Picard-Fuchs equations for Coulomb gases of various charge content. Analysis of monodromies of these solutions around their singular points yields semiclassical spectra as well as instanton effects such as Bloch bandwidth. Both are shown to be in perfect agreement with numerical simulations.
147 - John Cardy , Erik Tonni 2016
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy.
149 - John Cardy 2014
We consider a quantum quench in a finite system of length $L$ described by a 1+1-dimensional CFT, of central charge $c$, from a state with finite energy density corresponding to an inverse temperature $betall L$. For times $t$ such that $ell/2<t<(L-ell)/2$ the reduced density matrix of a subsystem of length $ell$ is exponentially close to a thermal density matrix. We compute exactly the overlap $cal F$ of the state at time $t$ with the initial state and show that in general it is exponentially suppressed at large $L/beta$. However, for minimal models with $c<1$ (more generally, rational CFTs), at times which are integer multiples of $L/2$ (for periodic boundary conditions, $L$ for open boundary conditions) there are (in general, partial) revivals at which $cal F$ is $O(1)$, leading to an eventual complete revival with ${cal F}=1$. There is also interesting structure at all rational values of $t/L$, related to properties of the CFT under modular transformations. At early times $t!ll!(Lbeta)^{1/2}$ there is a universal decay ${cal F}simexpbig(!-!(pi c/3)Lt^2/beta(beta^2+4t^2)big)$. The effect of an irrelevant non-integrable perturbation of the CFT is to progressively broaden each revival at $t=nL/2$ by an amount $O(n^{1/2})$.
In literature one can find many generalizations of the usual Leibniz derivative, such as Jackson derivative, Tsallis derivative and Hausdorff derivative. In this article we present a connection between Jackson derivative and recently proposed Hausdorff derivative. On one hand, the Hausdorff derivative has been previously associated with non-extensivity in systems presenting fractal aspects. On the other hand, the Jackson derivative has a solid mathematical basis because it is the $overline{q}$-analog of the ordinary derivative and it also arises in quantum calculus. From a quantum deformed $overline{q}$-algebra we obtain the Jackson derivative and then address the problem of $N$ non-interacting quantum oscillators. We perform an expansion in the quantum grand partition function from which we obtain a relationship between the parameter $overline{q}$, related to Jackson derivative, and the parameters $zeta$ and $q$ related to Hausdorff derivative and Tsallis derivative, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا