No Arabic abstract
We analyze the electronic transport through a quantum dot that contains a magnetic impurity. The coherent transport of electrons is governed by the quantum confinement inside the dot, but is also influenced by the exchange interaction with the impurity. The interplay between the two gives raise to the singlet-triplet splitting of the energy levels available for the tunneling electron. In this paper, we focus on the charge fluctuations and, more precisely, the height of the conductance peaks. We show that the conductance peaks corresponding to the triplet levels are three times higher than those corresponding to singlet levels, if electronic correlations are neglected (for non-interacting dots, when an exact solution can be obtained). Next, we consider the Coulomb repulsion and the many-body correlations. In this case, the singlet/triplet peak height ratio has a complex behavior. Usually the highest peak corresponds to the state that is lowest in energy (ground state), regardless if it is singlet or triplet. In the end, we get an insight on the Kondo regime for such a system, and show the formation of three Kondo peaks. We use the equation of motion method with appropriate decoupling.
We consider an impurity with a spin degree of freedom coupled to a finite reservoir of non-interacting electrons, a system which may be realized by either a true impurity in a metallic nano-particle or a small quantum dot coupled to a large one. We show how the physics of such a spin impurity is revealed in the many-body spectrum of the entire finite-size system; in particular, the evolution of the spectrum with the strength of the impurity-reservoir coupling reflects the fundamental many-body correlations present. Explicit calculation in the strong and weak coupling limits shows that the spectrum and its evolution are sensitive to the nature of the impurity and the parity of electrons in the reservoir. The effect of the finite size spectrum on two experimental observables is considered. First, we propose an experimental setup in which the spectrum may be conveniently measured using tunneling spectroscopy. A rate equation calculation of the differential conductance suggests how the many-body spectral features may be observed. Second, the finite-temperature magnetic susceptibility is presented, both the impurity susceptibility and the local susceptibility. Extensive quantum Monte-Carlo calculations show that the local susceptibility deviates from its bulk scaling form. Nevertheless, for special assumptions about the reservoir -- the clean Kondo box model -- we demonstrate that finite-size scaling is recovered. Explicit numerical evaluations of these scaling functions are given, both for even and odd parity and for the canonical and grand-canonical ensembles.
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.
Using different techniques, and Fermi-liquid relationships, we calculate the variation with applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit $U gg Delta$ where $U$ is the Coulomb repulsion and $Delta$ is half the resonant-level width, and consider several values of the dot level energy $E_d$, ranging from the Kondo regime $epsilon_F-E_d gg Delta$ to the intermediate-valence regime $epsilon_F-E_d sim Delta$, where $epsilon_F$ is the Fermi energy. We have mainly used density-matrix renormalization group (DMRG) and numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from DMRG and NRG+RPT are compared with the corresponding Bethe ansatz results for $U rightarrow infty$, showing an excellent agreement once $E_d$ is renormalized by a constant Haldane shift. For $U < 3 Delta$ a simple perturbative approach in $U$ agrees very well with the other methods. The conductance decreases with applied magnetic field for dot occupancies $n_d sim 1$ and increases for $n_d sim 0.5$ or $n_d sim 1.5$ regardless of the value of $U$. We also relate the energy scale for the magnetic-field dependence of the conductance with the width of low energy peak in the spectral density of the dot.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our calculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.