Do you want to publish a course? Click here

Complementarity of Future Dark Energy Probes

76   0   0.0 ( 0 )
 Added by Jochen Weller
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years a plethora of future surveys have been suggested to constrain the nature of dark energy. In this paper we adapt a binning approach to the equation of state factor ``w and discuss how future weak lensing, galaxy cluster counts, Supernovae and baryon acoustic oscillation surveys constrain the equation of state at different redshifts. We analyse a few representative future surveys, namely DES, PS1, WFMOS, PS4, EUCLID, SNAP and SKA, and perform a principal component analysis for the ``w bins. We also employ a prior from Planck cosmic microwave background measurements on the remaining cosmological parameters. We study at which redshifts a particular survey constrains the equation of state best and how many principal components are significantly determined. We then point out which surveys would be sufficiently complementary. We find that weak lensing surveys, like EUCLID, would constrain the equation of state best and would be able to constrain of the order of three significant modes. Baryon acoustic oscillation surveys on the other hand provide a unique opportunity to probe the equation of state at relatively high redshifts.

rate research

Read More

We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of ~10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis of principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1<w<1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of ~100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.
248 - A.Kim , N.Padmanabhan , G.Aldering 2013
This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established probes using Type IA supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.
We study the complementarity between the Large Hadron Collider (LHC) and future lepton colliders in probing electroweak baryogenesis induced by an additional bottom Yukawa coupling $rho_{bb}$. The context is general two Higgs doublet model (g2HDM) where such additional bottom Yukawa coupling can account for the observed baryon asymmetry of the Universe if $mbox{Im}(rho_{bb}) gtrsim 0.058$. We find that LHC would probe the nominal $mbox{Im}(rho_{bb})$ required for baryogenesis to some extent via $bg to bA to bZh$ process if $300~mbox{GeV}lesssim m_A lesssim 450$ GeV, where $A$ is the CP-odd scalar in g2HDM. We show that future electron positron collider such as International Linear Collider with $500$ GeV and 1 TeV collision energies may offer unique probe for the nominal $mbox{Im}(rho_{bb})$ via $e^+ e^- to Z^*to A H$ process followed by $A,H to b bar b$ decays in four $b$-jets signature. For complementarity we also study the resonant diHiggs productions, which may give an insight into strong first-order electroweak phase transition, via $e^+ e^- to Z^*to A H to A h h$ process in six $b$-jets signature. We find that 1 TeV collision energy with $mathcal{O}(1)~text{ab}^{-1}$ integrated luminosity could offer an ideal environment for the discovery.
Cluster abundances are oddly insensitive to canonical early dark energy. Early dark energy with sound speed equal to the speed of light cannot be distinguished from a quintessence model with the equivalent expansion history for $z<2$ but negligible early dark energy density, despite the different early growth rate. However, cold early dark energy, with a sound speed much smaller than the speed of light, can give a detectable signature. Combining cluster abundances with cosmic microwave background power spectra can determine the early dark energy fraction to 0.3 % and distinguish a true sound speed of 0.1 from 1 at 99 % confidence. We project constraints on early dark energy from the Euclid cluster survey, as well as the Dark Energy Survey, using both current and projected Planck CMB data, and assess the impact of cluster mass systematics. We also quantify the importance of dark energy perturbations, and the role of sound speed during a crossing of $w=-1$.
We show that proton storage ring experiments designed to search for proton electric dipole moments can also be used to look for the nearly dc spin precession induced by dark energy and ultra-light dark matter. These experiments are sensitive to both axion-like and vector fields. Current technology permits probes of these phenomena up to three orders of magnitude beyond astrophysical limits. The relativistic boost of the protons in these rings allows this scheme to have sensitivities comparable to atomic co-magnetometer experiments that can also probe similar phenomena. These complementary approaches can be used to extract the micro-physics of a signal, allowing us to distinguish between pseudo-scalar, magnetic and electric dipole moment interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا