No Arabic abstract
We study a two-component Fermi system with attractive interactions and different populations of the two species in a cubic lattice. For an intermediate coupling we find a uniformly polarized superfluid which is stable down to very low temperatures. The momentum distribution of this phase closely resembles that of the Sarma phase, characterized by two Fermi surfaces. This phase is shown to be stabilized by a potential energy gain, as in a BCS superfluid, in contrast to the unpolarized BEC which is stabilized by kinetic energy. We present general arguments suggesting that preformed pairs in the unpolarized superfluid favor the stabilization of a polarized superfluid phase.
By introducing the possibility of equal- and opposite-spin pairings concurrently, we show that the extended attractive Hubbard model (EAHM) exhibits rich ground state phase diagrams with a variety of singlet, triplet, and mixed parity superconducting orders. We study the competition between these superconducting pairing symmetries invoking an unrestricted Hartree-Fock- Bogoliubov-de Gennes (HFBdG) mean-field approach, and we use the d-vector formalism to characterize the nature of the stabilized superconducting orders. We discover that, while all other types of orders are suppressed, a non-unitary triplet order dominates the phase space in the presence of an in-plane external magnetic field. We also find a transition between a non-unitary to unitary superconducting phase driven by the change in average electron density. Our results serve as a reference for identifying and understanding the nature of superconductivity based on the symmetries of the pairing correlations. The results further highlight that EAHM is a suitable effective model for describing most of the pairing symmetries discovered in different materials.
We present a study of the attractive Hubbard model based on the dynamical mean field theory (DMFT) combined with the numerical renormalization group (NRG). For this study the NRG method is extended to deal with self-consistent solutions of effective impurity models with superconducting symmetry breaking. We give details of this extension and validate our calculations with DMFT results with antiferromagnetic ordering. We also present results for static and integrated quantities for different filling factors in the crossover from weak (BCS) to strong coupling (BEC) superfluidity. We study the evolution of the single-particle spectra throughout the crossover regime. Although the DMFT does not include the interaction of the fermions with the Goldstone mode, we find strong deviations from the mean-field theory in the intermediate and strong coupling (BEC) regimes. In particular, we show that low-energy charge fluctuations induce a transfer of spectral weight from the Bogoliubov quasiparticles to a higher-energy incoherent hump.
We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using matrix product states method. Our analysis reveals the existence of a new type of Fulde-Ferrell-Larkin-Ovchinnikov phase in the presence of competing interactions. Furthermore, we find distinct evidence for the presence of hidden order in the system. We present an effective model to understand the emergent oscillations in the string correlations due to the imbalance, and show how they can become an efficient tool to investigate systems with imbalance.
We explore theoretically the novel superfluidity of harmonically-trapped polarized ultracold fermionic atoms in a two-dimensional (2D) optical lattice by solving the Bogoliubov-de Gennes equations. The pairing amplitude is found to oscillate along the radial direction at low particle density and along the angular direction at high density. The former is consistent with the existing experiments and the latter is a newly predicted Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, which can be tested in experiments.
We provide a new perspective on the pseudogap physics for attractive fermions as described by the three-dimensional Hubbard model. The pseudogap in the single-particle spectral function, which occurs for temperatures above the critical temperature $T_c$ of the superfluid transition, is often interpreted in terms of preformed, uncondensed pairs. Here we show that the occurrence of pseudogap physics can be consistently understood in terms of local excitations which lead to a splitting of the quasiparticle peak for sufficiently large interaction. This effect becomes prominent at intermediate and high temperatures when the quantum mechanical hopping is incoherent. We clarify the existence of a conjectured temperature below which pseudogap physics is expected to occur. Our results are based on approximating the physics of the three-dimensional Hubbard model by dynamical mean field theory calculations and a momentum independent self-energy. Our predictions can be tested with ultracold atoms in optical lattices with currently available temperatures and spectroscopic techniques.