We study a giant magnon and a spike solution for the string rotating on AdS(4) X CP**3 geometry. We consider rigid rotating fundamental string in the SU(2) X SU(2) sector inside the CP**3 and find out the general form of all the conserved charges. We find out the dispersion relation corresponding to both the known giant magnon and the new spike solutions. We further study the finite size correction in both cases.
We study general rotating string solution in the AdS(4) X CP**3 background with a B_NS holonomy turned on over ${bf CP}^1$ $subset $ $ {bf CP}^3$. We find the giant magnon and single spike solutions for the string moving in this background corresponding to open spin chain. We calculate the corresponding dispersion relation among various conserved charges for both the cases. We further study the finite size effect on both the giant magnon and single spike solutions.
We study the Wilson loops and defects in the three dimensional QFT from the D-branes in the AdS(4) x CP**3 geometry. We find out explicit D-brane configurations in the bulk which correspond to both straight and circular Wilson lines extended to the boundary of AdS(4). We analyze critically the role of boundary contributions to the D2-branes with various topology and to the fundamental string actions.
The non-linear nature of string theory on non-trivial backgrounds related to the AdS/CFT correspondence suggests to look for simplifications. Two such simplifications proved to be useful in studying string theory. These are the pp-wave limit which describes point-like strings and the so called near flat space limit which connects two different sectors of string theory -- pp-waves and giant magnons. Recently another example of AdS/CFT duality emerged - $AdS_4/CFT_3$, which suggests duality between $mathcal N=6$ CS theory and superstring theory on $AdS_4times cp$. In this paper we study the near flat space limit of strings on the $AdS_4times cp$ background and discuss possible applications of the reduced theory.
We discuss finite-size corrections to the spiky strings in $AdS$ space which is dual to the long $mathcal{N}=4$ SYM operators of the form Tr($Delta_+ ^{J_1}phi_1Delta_+ ^{J_2}phi_2...Delta_+ ^{J_n}phi_n$). We express the finite-size dispersion relation in terms of Lambert $mathbf{W}$-function. We further establish the finite-size scaling relation between energy and angular momentum of the spiky string in presence of mixed fluxes in terms of $mathbf{W}$-function. We comment on the solution in pure NS-NS background as well.
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equation for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in AdS3 are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.