Do you want to publish a course? Click here

Brownian survival and Lifshitz tail in perturbed lattice disorder

285   0   0.0 ( 0 )
 Added by Ryoki Fukushima
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the annealed asymptotics for the survival probability of Brownian motion among randomly distributed traps. The configuration of the traps is given by independent displacements of the lattice points. We determine the long time asymptotics of the logarithm of the survival probability up to a multiplicative constant. As applications, we show the Lifshitz tail effect of the density of states of the associated random Schr{o}dinger operator and derive a quantitative estimate for the strength of intermittency in the Parabolic Anderson problem.



rate research

Read More

The perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal submatrices of a matrix $G+mathrm{diag}(mathbf{a})$, where $G$ is the random matrix from the Gaussian Unitary Ensemble (GUE), and $mathrm{diag}(mathbf{a})$ is a fixed diagonal matrix. We introduce Markov transitions based on exponential jumps of eigenvalues, and show that their successive application is equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new distributional symmetry for a family of reflected Brownian motions with drifts coming from an arithmetic progression. The construction we present may be viewed as a random matrix analogue of the recent results of the first author and Axel Saenz (arXiv:1907.09155 [math.PR]).
In high dimensional percolation at parameter $p < p_c$, the one-arm probability $pi_p(n)$ is known to decay exponentially on scale $(p_c - p)^{-1/2}$. We show the same statement for the ratio $pi_p(n) / pi_{p_c}(n)$, establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability $p_c$. These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at mesoscopic distance from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter $n$ box on scale $n^{d-6}$; this result complements a lower bound of Aizenman.
99 - Jason Miller , Wei Qian 2020
We study geodesics in the Brownian map $(mathcal{S},d, u)$, the random metric measure space which arises as the Gromov-Hausdorff scaling limit of uniformly random planar maps. Our results apply to all geodesics including those between exceptional points. First, we prove a strong and quantitative form of the confluence of geodesics phenomenon which states that any pair of geodesics which are sufficiently close in the Hausdorff distance must coincide with each other except near their endpoints. Then, we show that the intersection of any two geodesics minus their endpoints is connected, the number of geodesics which emanate from a single point and are disjoint except at their starting point is at most $5$, and the maximal number of geodesics which connect any pair of points is $9$. For each $1le k le 9$, we obtain the Hausdorff dimension of the pairs of points connected by exactly $k$ geodesics. For $k=7,8,9$, such pairs have dimension zero and are countably infinite. Further, we classify the (finite number of) possible configurations of geodesics between any pair of points in $mathcal{S}$, up to homeomorphism, and give a dimension upper bound for the set of endpoints in each case. Finally, we show that every geodesic can be approximated arbitrarily well and in a strong sense by a geodesic connecting $ u$-typical points. In particular, this gives an affirmative answer to a conjecture of Angel, Kolesnik, and Miermont that the geodesic frame of $mathcal{S}$, the union of all of the geodesics in $mathcal{S}$ minus their endpoints, has dimension one, the dimension of a single geodesic.
The Brownian web (BW), which developed from the work of Arratia and then T{o}th and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space-time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the Brownian net (BN) constructed by Sun and Swart, and the dynamical Brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding discrete extensions of the DW -- the discrete net (DN) and the dynamical discrete web (DyDW). These discrete extensions have a natural geometric structure in which the underlying Bernoulli left or right arrow structure of the DW is extended by means of branching (i.e., allowing left and right simultaneously) to construct the DN or by means of switching (i.e., from left to right and vice-versa) to construct the DyDW. In this paper we show that there is a similar structure in the continuum where arrow direction is replaced by the left or right parity of the (1,2) space-time points of the BW (points with one incoming path from the past and two outgoing paths to the future, only one of which is a continuation of the incoming path). We then provide a complete construction of the DyBW and an alternate construction of the BN to that of Sun and Swart by proving that the switching or branching can be implemented by a Poissonian marking of the (1,2) points.
We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general beta siblings converge to Sine_beta, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine_beta is continuous in the gap size and $beta$, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at beta=2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا