Do you want to publish a course? Click here

Redshifted Absorption at He I 10830 as a Probe of the Accretion Geometry of T Tauri Stars

87   0   0.0 ( 0 )
 Added by William Fischer
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We probe the geometry of magnetospheric accretion in classical T Tauri stars by modeling red absorption at He I 10830 via scattering of the stellar and veiling continua. Under the assumptions that the accretion flow is an azimuthally symmetric dipole and helium is sufficiently optically thick that all incident 1-micron radiation is scattered, we illustrate the sensitivity of He I 10830 red absorption to both the size of the magnetosphere and the filling factor of the hot accretion shock. We compare model profiles to those observed in 21 CTTS with subcontinuum redshifted absorption at He I 10830 and find that about half of the stars have red absorptions and 1-micron veilings that are consistent with dipole flows of moderate width with accretion shock filling factors matching the size of the magnetospheric footpoints. However, the remaining 50% of the profiles, with a combination of broad, deep absorption and low 1-micron veiling, require very wide flows where magnetic footpoints are distributed over 10-20% of the stellar surface but accretion shock filling factors are < 1%. We model these profiles by invoking large magnetospheres dilutely filled with accreting gas, leaving the disk over a range of radii in many narrow streamlets that fill only a small fraction of the entire infall region. In some cases accreting streamlets need to originate in the disk between several stellar radii and at least the corotation radius. A few stars have such deep absorption at velocities greater than half the stellar escape velocity that flows near the star with less curvature than a dipole trajectory seem to be required.



rate research

Read More

99 - S. Edwards , W. Fischer , J. Kwan 2003
He I 10830 profiles acquired with Kecks NIRSPEC for 6 young low mass stars with high disk accretion rates (AS 353A, DG Tau, DL Tau, DR Tau, HL Tau and SVS 13) provide new insight into accretion-driven winds. In 4 stars the profiles have the signature of resonance scattering, and possess a deep and broad blueshifted absorption that penetrates more than 50% into the 1 micron continuum over a continuous range of velocities from near the stellar rest velocity to the terminal velocity of the wind, unlike inner wind signatures seen in other spectral features. This deep and broad absorption provides the first observational tracer of the acceleration region of the inner wind and suggests that this acceleration region is situated such that it occults a significant portion of the stellar disk. The remaining 2 stars also have blue absorption extending below the continuum although here the profiles are dominated by emission, requiring an additional source of helium excitation beyond resonant scattering. This is likely the same process that produces the emission profiles seen at He I 5876.
112 - G. Costigan 2012
We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region which is based on ~300 high resolution optical spectra from the multi-object fibre spectrograph FLAMES/GIRAFFE at the ESO/VLT. Twenty five objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Ha (6562.81 A) and Ca II (8662.1 A) as accretion indicators we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Ha equivalent width, Ha 10% width and the CaII equivalent width. The mean amplitude of variations in derived accretion rate from Ha equivalent width was ~ 0.37 dex, from Ca II equivalent width ~0.83 dex and from Ha 10% width ~1.11 dex. Based on the large amplitude of variations in accretion rates derived from the Ha 10% width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Taking the variations in Ha equivalent width and CaII equivalent width accretion rates to be closer to the true value, they suggest that the spread which has been found around the accretion rate to stellar mass relation is not due to the variability of individual objects on time-scales of weeks to ~1 year. From these variations we can also infer that the accretion rates are stable within < 0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur on less than the shortest time-scales in our observations, 8-25 days, which is comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows, and also suggests that observations on time-scales of ~a couple of weeks are sufficient to limit the total extent of accretion rate variations in typical young stars.
We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10830 AA spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10830 AA triplet. The arch filament expanded in height and extended in length from 13 to 21. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km/s. Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km/s in the chromosphere. The temporal evolution of He I 10830 AA profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. We followed the arch filament as it carried plasma during its rise from the photosphere to the corona. The material then drained toward the photosphere, reaching supersonic velocities, along the legs of the arch filament. Our observational results support theoretical AFS models and aids in improving future models.
Characterising the atmospheres of exoplanets is key to understanding their nature and provides hints about their formation and evolution. High-resolution measurements of the helium triplet, He(2$^{3}$S), absorption of highly irradiated planets have been recently reported, which provide a new mean to study their atmospheric escape. In this work, we study the escape of the upper atmospheres of HD 189733 b and GJ 3470 b by analysing high-resolution He(2$^{3}$S) absorption measurements and using a 1D hydrodynamic model coupled with a non-LTE model for the He(2$^{3}$S) state. We also use the H density derived from Ly$alpha$ observations to further constrain their temperatures, T, mass-loss rates,$dot M$, and H/He ratios. We have significantly improved our knowledge of the upper atmospheres of these planets. While HD 189733 b has a rather compressed atmosphere and small gas radial velocities, GJ 3470 b, with a gravitational potential ten times smaller, exhibits a very extended atmosphere and large radial outflow velocities. Hence, although GJ 3470 b is much less irradiated in the XUV, and its upper atmosphere is much cooler, it evaporates at a comparable rate. In particular, we find that the upper atmosphere of HD 189733 b is compact and hot, with a maximum T of 12400$^{+400}_{-300}$ K, with very low mean molecular mass (H/He=(99.2/0.8)$pm0.1$), almost fully ionised above 1.1 R$_p$, and with $dot M$=(1.1$pm0.1$)$times$10$^{11}$ g/s. In contrast, the upper atmosphere of GJ 3470 b is highly extended and relatively cold, with a maximum T of 5100$pm900$ K, also with very low mean molecular mass (H/He=(98.5/1.5)$^{+1.0}_{-1.5}$), not strongly ionised and with $dot M$=(1.9$pm1.1$)$times$10$^{11}$ g/s. Furthermore, our results suggest that the upper atmospheres of giant planets undergoing hydrodynamic escape tend to have very low mean molecular mass (H/He$gtrsim$97/3).
We have studied numerically the evolution of protostellar disks around intermediate and upper mass T Tauri stars (0.25 M_sun < M_st < 3.0 M_sun) that have formed self-consistently from the collapse of molecular cloud cores. In the T Tauri phase, disks settle into a self-regulated state, with low-amplitude nonaxisymmetric density perturbations persisting for at least several million years. Our main finding is that the global effect of gravitational torques due to these perturbations is to produce disk accretion rates that are of the correct magnitude to explain observed accretion onto T Tauri stars. Our models yield a correlation between accretion rate M_dot and stellar mass M_st that has a best fit M_dot propto M_st^{1.7}, in good agreement with recent observations. We also predict a near-linear correlation between the disk accretion rate and the disk mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا