No Arabic abstract
The recent discovery of superconductivity in the so-called iron-oxypnictide family of compounds has generated intense interest. The layered crystal structure with transition metal ions in planar square lattice form and the discovery of spin-density-wave order near 130 K seem to hint at a strong similarity with the copper oxide superconductors. A burning current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories have been put forward depending on the underlying band structures: local moment antiferromagnetic ground state for strong coupling approach and itinerant ground state for weak coupling approach. The local moment magnetism approach stresses on-site correlations and proximity to a Mott insulating state and thus the resemblance to cuprates; while the latter approach emphasizes the itinerant electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Here we report the first angle-resolved photoemission spectroscopy (ARPES) investigation of LaOFeP (Tc = 5.9 K), the first reported iron-based superconductor. Our results favor the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper based superconductors.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is antiferromagnetic with T_N^{exp}~250K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered plaquettes or zigzags), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show tau_1 (plaquettes) spin configuration to be more favorable than tau_2 (zigzags).
We use density functional theory to study the structure and the band structure of the monolayer FeSe deposited on the SrTiO$_3$ substrate with the additional layer of Se between them. Top of the SrTiO$_3$ is formed by the double TiO layer with and without oxygen vacancies. Several structures with different arrangements of the additional Se atoms above the double TiO layer is considered. Equilibrium structures were found and the band structures for them were obtained. Near the $Gamma=(0,0,0)$ point of the Brillouin zone, the hole Fermi surface pockets persist and, additionally, an electron pocket appears. Thus neither the presence of the additional Se layer nor the oxygen vacancies in the double TiO layer leads to the sinking of hole bands below the Fermi level near the $Gamma$ point. Necessity to include the strong electronic correlations into account is discussed.
Strong electron interactions in solids increase effective mass, and shrink the electronic bands [1]. One of the most unique and robust experimental facts about iron-based superconductors [2-4] is the renormalization of the conduction band by factor of 3 near the Fermi level [5-9]. Obviously related to superconductivity, this unusual behaviour remains unexplained. Here, by studying the momentum-resolved spectrum of the whole valence band in a representative material, we show that this phenomenon originates from electronic interaction on a much larger energy scale. We observe an abrupt depletion of the spectral weight in the middle of the Fe $3d$ band, which is accompanied by a drastic increase of the scattering rate. Remarkably, all spectral anomalies including the low-energy renormalization can be explained by coupling to excitations, strongly peaked at about 0.5 eV. Such high-energy interaction distinguishes all unconventional superconductors from common metals.
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron interaction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.
We report a systematic polarization-dependent angle-resolved photoemission spectroscopy study of the three-dimensional electronic structure of the recently discovered 112-type iron-based superconductor Ca1-xLaxFeAs2 (x = 0.1). Besides the commonly reported three hole-like and two electron-like bands in iron-based superconductors, we resolve one additional hole-like band around the zone center and one more fast-dispersing band near the X point in the vicinity of Fermi level. By tuning the polarization and the energy of incident photons,we are able to identify the specific orbital characters and the kz dependence of all bands. Combining with band calculations, we find As 4pz and 4px (4py) orbitals contribute significantly to the additional three-dimensional hole-like band and the narrow band, respectively. Also, there are considerable hybridization between the As 4p zand Fe 3d orbitals in the additional hole-like band, which suggests the strong coupling between the unique arsenic zigzag bond layers and the FeAs layers therein. Our findings provide a comprehensive picture of the orbital characters of the low-lying band structure of 112-type iron-based superconductors, which can be a starting point for the further understanding of their unconventional superconductivity.