Do you want to publish a course? Click here

Time-resolved detection of single-electron interference

235   0   0.0 ( 0 )
 Added by Simon Gustavsson
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives non-coherent electronic transitions in the quantum dots.



rate research

Read More

We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if the number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 $mu$s, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.
124 - L. Gaudreau , A. Kam , J. B. Kycia 2009
We are pursuing a capability to perform time resolved manipulations of single spins in quantum dot circuits involving more than two quantum dots. In this paper, we demonstrate full counting statistics as well as averaging techniques we use to calibrate the tunnel barriers. We make use of this to implement the Delft protocol for single shot single spin readout in a device designed to form a triple quantum dot potential. We are able to tune the tunnelling times over around three orders of magnitude. We obtain a spin relaxation time of 300 microseconds at 10T.
Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment has been repeated with electrons in vacuum up to the more massive $C_{60}$ molecules. Mesoscopic rings threaded by a magnetic flux provide the solid-state analogous. Intra-molecular interference has been recently discussed in molecular junctions. Here we propose to exploit interference to achieve all-electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics and spin-qubit applications. The device consists of an interference single electron transistor (ISET), where destructive interference between orbitally degenerate electronic states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay between interference and the exchange coupling on the system generates an effective energy renormalization yielding different blocking biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved.
The unpredictability of a single quantum event lies at the very core of quantum mechanics. Physical information is therefore drawn from a statistical evaluation of many such processes. Nevertheless, recording each single quantum event in a time trace the random telegraph signal is of great value, as it allows insight into the underlying physical system. Here, quantum dots have proven to be well suited systems, as they exhibit both single photon emission and single electron charge transport. While single photon emission is generally studied on self-assembled quantum dots, single electron transport studies are focused on gate-defined structures. We investigate, on a single self-assembled quantum dot, the single electron transport in the optical telegraph signal with high bandwidth and observe in the full counting statistics the interplay between charge and spin dynamics in a noninvasive way. In particular, we are able to identify the spin relaxation of the Zeeman-split quantum-dot level in the charge statistics.
We present real-time detection measurements of electron tunneling in a graphene quantum dot. By counting single electron charging events on the dot, the tunneling process in a graphene constriction and the role of localized states are studied in detail. In the regime of low charge detector bias we see only a single time-dependent process in the tunneling rate which can be modeled using a Fermi-broadened energy distribution of the carriers in the lead. We find a non-monotonic gate dependence of the tunneling coupling attributed to the formation of localized states in the constriction. Increasing the detector bias above 2 mV results in an increase of the dot-lead transition rate related to back-action of the charge detector current on the dot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا