Do you want to publish a course? Click here

Decomposition of the Host Galaxies of Active Galactic Nuclei Using Hubble Space Telescope Images

125   0   0.0 ( 0 )
 Added by Minjin Kim
 Publication date 2008
  fields Physics
and research's language is English
 Authors Minjin Kim




Ask ChatGPT about the research

Investigating the link between supermassive black hole and galaxy evolution requires careful measurements of the properties of the host galaxies. We perform simulations to test the reliability of a two-dimensional image-fitting technique to decompose the host galaxy and the active galactic nucleus (AGN), especially on images obtained using cameras onboard the Hubble Space Telescope (HST), such as the Wide-Field Planetary Camera 2, the Advanced Camera for Surveys, and the Near-Infrared Camera and Multi-Object Spectrometer. We quantify the relative importance of spatial, temporal, and color variations of the point-spread function (PSF). To estimate uncertainties in AGN-to-host decompositions, we perform extensive simulations that span a wide range in AGN-to-host galaxy luminosity contrast, signal-to-noise ratio, and host galaxy properties (size, luminosity, central concentration). We find that realistic PSF mismatches that typically afflict actual observations systematically lead to an overestimate of the flux of the host galaxy. Part of the problem is caused by the fact that the HST PSFs are undersampled. We demonstrate that this problem can be mitigated by broadening both the science and the PSF images to critical sampling without loss of information. Other practical suggestions are given for optimal analysis of HST images of AGN host galaxies.



rate research

Read More

We present Hubble Space Telescope (HST) WFC3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass with the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ~ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution (SED) fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ~30% of SLSNe-II arising from galaxies fainter than Mn I R ~ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.
We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift ($0.3<z<1.0$) radio-loud active galactic nuclei (AGN) with powerful relativistic jets ($L_{1.4GHz} >10^{27}$ WHz$^{-1}$), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities $L_{1.4GHz} sim 10^{23.7} - 10^{28.3}$~WHz$^{-1}$, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the $mu_{e}$-$R_{eff}$ relation for ellipticals and bulges. The two populations of blazars show different behaviours in the mnuc - mbulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, that could be interpreted in terms of AGN feedback. Our findings are consistent with semi--analytical models where low--luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high--luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.
151 - Ryan C. Hickox 2016
Our understanding of the cosmic evolution of supermassive black holes (SMBHs) has been revolutionized by the advent of large multiwavelength extragalactic surveys, which have enabled detailed statistical studies of the host galaxies and large-scale structures of active galactic nuclei (AGN). We give an overview of some recent results on SMBH evolution, including the connection between AGN activity and star formation in galaxies, the role of galaxy mergers in fueling AGN activity, the nature of luminous obscured AGN, and the connection between AGN and their host dark matter halos. We conclude by looking to the future of large-scale extragalactic X-ray and spectroscopic surveys.
(Abridged) We present STIS observations of 14 nearby low-luminosity active galactic nuclei, including 13 LINERs and 1 Seyfert, taken at multiple parallel slit positions centered on the galaxy nuclei and covering the H-alpha spectral region. For each galaxy, we measure the emission-line velocities, line widths, and strengths, to map out the inner narrow-line region structure. There is a wide diversity among the velocity fields: in a few galaxies the gas is clearly in disk-like rotation, while in other galaxies the gas kinematics appear chaotic or are dominated by radial flows with multiple velocity components. The [S II] line ratio indicates a radial stratification in gas density, with a sharp increase within the inner 10-20 pc, in the majority of the Type 1 objects. We examine how the [N II] 6583 line width varies as a function of aperture size over a range of spatial scales, extending from scales comparable to the black holes sphere of influence to scales dominated by the host galaxys bulge. For most galaxies in the sample, we find that the emission-line velocity dispersion is largest within the black holes gravitational sphere of influence, and decreases with increasing aperture size toward values similar to the bulge stellar velocity dispersion measured within ground-based apertures. Future dynamical modeling in order to determine black hole masses for a few objects in this sample may be worthwhile, although disorganized motion will limit the accuracy of the mass measurements.
Galaxy pairs with separations of only a few kpc represent important stages in the merger-driven growth of supermassive black holes (SMBHs). However, such mergers are difficult to identify observationally due to the correspondingly small angular scales. In Paper I we presented a method of finding candidate kpc-scale galaxy mergers that is leveraged on the selection of X-ray sources spatially offset from the centers of host galaxies. In this paper we analyze new Hubble Space Telescope (HST) WFC3 imaging for six of these sources to search for signatures of galaxy mergers. The HST imaging reveals that four of the six systems are on-going galaxy mergers with separations of 1.2-6.6 kpc (offset AGN). The nature of the remaining two spatially offset X-ray sources is ambiguous and may be associated with super-Eddington accretion in X-ray binaries. The ability of this sample to probe small galaxy separations and minor mergers makes it uniquely suited for testing the role of galaxy mergers for AGN triggering. We find that galaxy mergers with only one AGN are predominantly minor mergers with mass ratios similar to the overall population of galaxy mergers. By comparison, galaxy mergers with two AGN are biased toward major mergers and larger nuclear gas masses. Finally, we find that the level of SMBH accretion increases toward smaller mass ratios (major mergers). This result suggests the mass ratio effects not only the frequency of AGN triggering but also the rate of SMBH growth in mergers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا