No Arabic abstract
During the last few years, investigations of Rare-Earth materials have made clear that not only the heavy fermion phase in these systems provides interesting physics, but the quantum criticality where such a phase dies exhibits novel phase transition physics not fully understood. Moreover, attempts to study the critical point numerically face the infamous fermion sign problem, which limits their accuracy. Effective action techniques and Callan-Symanzik equations have been very popular in high energy physics, where they enjoy a good record of success. Yet, they have been little exploited for fermionic systems in condensed matter physics. In this work, we apply the RG effective action and Callan-Symanzik techiques to the heavy fermion problem. We write for the first time the effective action describing the low energy physics of the system. The f-fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. This removes the fermion sign problem, making the effective action amenable to numerical studies as the effective theory is bosonic. Renormalization group studies of the effective action can be performed to extract approximations to nonperturbative effects at the transition. By performing one-loop renormalizations, resummed via Callan-Symanzik methods, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).
We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.
Quantum criticality beyond the Landau paradigm represents a fundamental problem in condensed matter and statistical physics. Heavy fermion systems with multipolar degrees of freedom can play an important role in the search for its universal description. We consider a Kondo lattice model with both spin and quadrupole degrees of freedom, which we show to exhibit an antiferroquadrupolar phase. Using a field theoretical representation of the model, we find that Kondo couplings are exactly marginal in the renormalization group sense in this phase. This contrasts with the relevant nature of the Kondo couplings in the paramagnetic phase and, as such, it implies that a Kondo destruction and a concomitant small to large Fermi surface jump must occur as the system is tuned from the antiferroquadrupolar ordered to the paramagnetic phase. Implications of our results for multipolar heavy fermion physics in particular and metallic quantum criticality in general are discussed.
A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. In order to understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, displays a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi liquid behavior appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial to the search for high temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn$_5$ under pressure $P=1.75$ GPa. The onset of the magnetic order is evidenced from a clear split of $^{115}$In-NQR spectrum due to the spontaneous internal field below the Neel temperature $T_N=2.5$ K. Simultaneously, bulk SC below $T_c=2.0$ K is demonstrated by the observation of the Meissner diamagnetism signal whose size is the same as in the exclusively superconducting phase. These results indicate that the AFM coexists homogeneously with the SC at a microscopic level.
Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM) have become indispensable tools in the study of correlated quantum materials. Both probe complementary aspects of the single-particle excitation spectrum. Taken together, ARPES and STM have the potential to explore properties of the electronic Greens function, a central object of many-body theory. This review explicates this potential with a focus on heavy-electron quantum criticality, especially the role of Kondo destruction. A discussion on how to probe the Kondo destruction effect across the quantum-critical point using ARPES and STM measurements is presented. Particular emphasis is placed on the question of how to distinguish between the signatures of the initial onset of hybridization-gap formation, which is the high-energy physics to be expected in all heavy-electron systems, and those of Kondo destruction, which characterizes the low-energy physics and, hence, the nature of quantum criticality. Recent progress and possible challenges in the experimental investigations are surveyed, the STM and ARPES spectra for several quantum-critical heavy-electron compounds are compared, and the prospects for further advances are outlined.