We use Spitzer MIPS data from the FIDEL Legacy Project in the Extended Groth Strip to analyze the stellar mass assembly of massive (M>10^11 M_sun) galaxies at z<2 as a function of structural parameters. We find 24 micron emission for more than 85% of the massive galaxies morphologically classified as disks, and for more than 57% of the massive systems morphologically classified as spheroids at any redshift, with about 8% of sources harboring a bright X-ray and/or infrared emitting AGN. More noticeably, 60% of all compact massive galaxies at z=1-2 are detected at 24 micron, even when rest-frame optical colors reveal that they are dead and evolving passively. For spheroid-like galaxies at a given stellar mass, the sizes of MIPS non-detections are smaller by a factor of 1.2 in comparison with IR-bright sources. We find that disk-like massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^-1 at z<1 (SFRs ranging from 1 to 10 M_sun/yr), typically a factor of 3-6 higher than massive spheroid-like objects in the same redshift range. At z>1, and more pronouncedly at z>1.3, the median specific SFRs of the disks and spheroids detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^-1 (SFR=10-200 M_sun/yr). We estimate that massive spheroid-like galaxies may have doubled (at the most) their stellar mass from star-forming events at z<2: less than 20% mass increase at 1.7<z<2.0, up to 40% more at 1.1<z<1.7, and less than 20% additional increase at z<1. Disk-like galaxies may have tripled (at the most) their stellar mass at z<2 from star formation alone: up to 40% mass increase at 1.7<z<2.0, and less than 180% additional increase below z=1.7 occurred at a steady rate.