Do you want to publish a course? Click here

Environment-Assisted Quantum Transport

194   0   0.0 ( 0 )
 Added by Patrick Rebentrost
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transport phenomena at the nanoscale are of interest due to the presence of both quantum and classical behavior. In this work, we demonstrate that quantum transport efficiency can be enhanced by a dynamical interplay of the system Hamiltonian with pure dephasing induced by a fluctuating environment. This is in contrast to fully coherent hopping that leads to localization in disordered systems, and to highly incoherent transfer that is eventually suppressed by the quantum Zeno effect. We study these phenomena in the Fenna-Matthews-Olson protein complex as a prototype for larger photosynthetic energy transfer systems. We also show that disordered binary tree structures exhibit enhanced transport in the presence of dephasing.

rate research

Read More

The way in which energy is transported through an interacting system governs fundamental properties in many areas of physics, chemistry, and biology. Remarkably, environmental noise can enhance the transport, an effect known as environment-assisted quantum transport (ENAQT). In this paper, we study ENAQT in a network of coupled spins subject to engineered static disorder and temporally varying dephasing noise. The interacting spin network is realized in a chain of trapped atomic ions and energy transport is represented by the transfer of electronic excitation between ions. With increasing noise strength, we observe a crossover from coherent dynamics and Anderson localization to ENAQT and finally a suppression of transport due to the quantum Zeno effect. We found that in the regime where ENAQT is most effective the transport is mainly diffusive, displaying coherences only at very short times. Further, we show that dephasing characterized by non-Markovian noise can maintain coherences longer than white noise dephasing, with a strong influence of the spectral structure on the transport effciency. Our approach represents a controlled and scalable way to investigate quantum transport in many-body networks under static disorder and dynamic noise.
We consider a quantum relay which is used by two parties to perform several continuous-variable protocols of quantum communication, from entanglement distribution (swapping and distillation), to quantum teleportation, and quantum key distribution. The theory of these protocols is suitably extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise in the bosonic environment. In the worst case scenario where bipartite entanglement is completely lost at the relay, we show that the various protocols can be reactivated by the assistance of classical (separable) correlations in the environment. In fact, above a critical amount, these correlations are able to guarantee the distribution of a weaker form of entanglement (quadripartite), which can be localized by the relay into a stronger form (bipartite) that is exploitable by the parties. Our findings are confirmed by a proof-of-principle experiment where we show, for the first time, that memory effects in the environment can drastically enhance the performance of a quantum relay, well beyond the single-repeater bound for quantum and private communications.
One of the new discoveries in quantum biology is the role of Environment Assisted Quantum Transport (ENAQT) in excitonic transport processes. In disordered quantum systems transport is most efficient when the environment just destroys quantum interferences responsible for localization, but the coupling does not drive the system to fully classical thermal diffusion yet. This poised realm between the pure quantum and the semi-classical domains has not been considered in other biological transport processes, such as charge transport through organic molecules. Binding in receptor-ligand complexes is assumed to be static as electrons are assumed to be not able to cross the ligand molecule. We show that ENAQT makes cross ligand transport possible and efficient between certain atoms opening the way for the reorganization of the charge distribution on the receptor when the ligand molecule docks. This new effect can potentially change our understanding how receptors work. We demonstrate room temperature ENAQT on the caffeine molecule.
Energy transfer within photosynthetic systems can display quantum effects such as delocalized excitonic transport. Recently, direct evidence of long-lived coherence has been experimentally demonstrated for the dynamics of the Fenna-Matthews-Olson (FMO) protein complex [Engel et al., Nature 446, 782 (2007)]. However, the relevance of quantum dynamical processes to the exciton transfer efficiency is to a large extent unknown. Here, we develop a theoretical framework for studying the role of quantum interference effects in energy transfer dynamics of molecular arrays interacting with a thermal bath within the Lindblad formalism. To this end, we generalize continuous-time quantum walks to non-unitary and temperature-dependent dynamics in Liouville space derived from a microscopic Hamiltonian. Different physical effects of coherence and decoherence processes are explored via a universal measure for the energy transfer efficiency and its susceptibility. In particular, we demonstrate that for the FMO complex an effective interplay between free Hamiltonian and thermal fluctuations in the environment leads to a substantial increase in energy transfer efficiency from about 70% to 99%.
103 - W. H. Zurek 2002
I introduce environment - assisted invariance -- a symmetry related to causality that is exhibited by correlated quantum states -- and describe how it can be used to understand the nature of ignorance and, hence, the origin of probabilities in quantum physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا