Do you want to publish a course? Click here

Chiral two-dimensional electron gas in a periodic magnetic field

151   0   0.0 ( 0 )
 Added by Benjamin Canals
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how the structure of electron energy bands can be changed with the variation of the field strength, so that we can start from nearly free electron gas and then transform it continuously to a system of essentially localized chiral electron states. We find that the electrons near some minima of the effective potential are responsible for occurrence of dissipationless persistent currents creating a lattice of current contours. The topological properties of the electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern numbers of several lower energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when the Fermi level lies in the gap, it is quantized.



rate research

Read More

The shakeup emission spectrum in a two-dimensional electron gas in a strong magnetic field is calculated analytically. The case of a localized photocreated hole is studied and the calculations are performed with a Nozieres-De Dominicis-like Hamiltonian. The hole potential is assumed to be small compared to the cyclotron energy and is therefore treated as a perturbation. Two competing many-body effects, the shakeup of the electron gas in the optical transition, and the excitonic effect, contribute to the shakeup satellite intensities. It is shown, that the range of the hole potential essentially influences the shakeup spectrum. For a short range interaction the above mentioned competition is more important and results in the shakeup emission quenching when electrons occupy only the lowest Landau level. When more than one Landau level is filled, the intensities of the shakeup satellites change with magnetic field nonmonotonically. If the interaction is long range, the Fermi sea shakeup processes dominate. Then, the satellite intensities smoothly decrease when the magnetic field increases and there is no suppression of the shakeup spectrum when the only lowest Landau level is filled. It is shown also that a strong hole localization is not a necessary condition for the SU spectrum to be observed. If the hole localization length is not small compared to the magnetic length, the SU spectrum still exists. Only the number of contributions to the SU spectrum reduces and the shakeup processes are always dominant.
We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated magnetic field perpendicular to the cylinder axis. The nature and energy dispersion of the quantum states reflects the interplay between different lengthscales, namely, the cylinder diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse homogeneous magnetic field drives carrier states from a quasi-2D (cylindrical) regime to a quasi-1D regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes, rings or dots on the cylinder surface, depending on the ratio between the the field periodicity and the cylinder radius. Results in different regimes are traced to either incipient Landau levels formation or Aharonov-Bohm behaviour.
We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high enough ($mu ~> 1 m^2/Vs$), consistent with the assertion that this transition is driven by electron-electron interactions. In a perpendicular magnetic field, the magnetoconductance is positive in the vicinity of the transition, but negative elsewhere. Our experiment suggests that such behavior results from a decrease of the spin-dependent part of the interaction in the vicinity of the transition.
118 - Y.S. Gui , C.R. Becker , J. Liu 2002
The transport properties of a magnetic two dimensional electron gas consisting of a modulation doped n type HgMnTe/HgCdTe quantum well, QW, have been investigated. By analyzing the Shubnikov-de Haas oscillations and the node positions of their beating patterns, we have been able to separate the gate voltage dependent Rashba spin-orbit splitting from the temperature dependent giant Zeeman splitting. It has been experimentally demonstrated that the Rashba spin-orbit splitting is larger than or comparable to the $sp-d$ exchange interaction induced giant Zeeman splitting in this magnetic 2DEG even at moderately high magnetic fields.
Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both the glass transition density $n_g$ and $n_c$, the critical density for the MIT, increase with B such that the width of the metallic glass phase ($n_c<n_s<n_g$) increases with B. At higher B, where the 2DES is spin polarized, $n_c$ and $n_g$ no longer depend on B. Our results demonstrate that charge, as opposed to spin, degrees of freedom are responsible for glassy ordering of the 2DES near the MIT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا