We study in detail a very natural metric for quantum states. This new proposal has two basic ingredients: entropy and purification. The metric for two mixed states is defined as the square root of the entropy of the average of representative purifications of those states. Some basic properties are analyzed and its relation with other distances is investigated. As an illustrative application, the proposed metric is evaluated for 1-qubit mixed states.
Reservoir computer is a temporal information processing system that exploits an artificial or physical dissipative dynamics to learn a dynamical system generating the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on a temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.
In this work we build a theoretical framework for the transport of information in quantum systems. This is a framework aimed at describing how out of equilibrium open quantum systems move information around their state space, using an approach inspired by transport theories. The main goal is to build new mathematical tools, together with physical intuition, to improve our understanding of non-equilibrium phenomena in quantum systems. In particular, we are aiming at unraveling the interplay between dynamical properties and information-theoretic features. The main rationale here is to have a framework that can imitate, and potentially replicate, the decades-long history of success of transport theories in modeling non-equilibrium phenomena.
Prompted by the open questions in Gibilisco [Int. J. Software Informatics, 8(3-4): 265, 2014], in which he introduced a family of measurement-induced quantum uncertainty measures via metric adjusted skew informations, we investigate these measures fundamental properties (including basis independence and spectral representation), and illustrate their applications to detect quantum nonlocality and entanglement.
Integrated Information Theory (IIT) has emerged as one of the leading research lines in computational neuroscience to provide a mechanistic and mathematically well-defined description of the neural correlates of consciousness. Integrated Information ($Phi$) quantifies how much the integrated cause/effect structure of the global neural network fails to be accounted for by any partitioned version of it. The holistic IIT approach is in principle applicable to any information-processing dynamical network regardless of its interpretation in the context of consciousness. In this paper we take the first steps towards a formulation of a general and consistent version of IIT for interacting networks of quantum systems. A variety of different phases, from the dis-integrated ($Phi=0$) to the holistic one (extensive $logPhi$), can be identified and their cross-overs studied.
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.