Do you want to publish a course? Click here

An extensive photometric study of the Blazhko RR Lyrae star MW Lyr: I. Light curve solution

96   0   0.0 ( 0 )
 Added by Adam S\\'odor
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have obtained the most extensive and most accurate photometric data of a Blazhko variable MW Lyr during the 2006-2007 observing seasons. The data within each 0.05 phase bin of the modulation period (P_m=1/f_m) cover the entire light cycle of the primary pulsation period (P_0=1/f_0), making possible a very rigorous and complete analysis. The modulation period is found to be 16.5462 d, which is about half of that was reported earlier from visual observations. Previously unknown features of the modulation have been detected. Besides the main modulation frequency f_m, sidelobe modulation frequencies around the pulsation frequency and its harmonics appear at +/- 2 f_m, +/- 4 f_m, and +/- 12.5 f_m separations as well. Residual signals in the prewhitened light curve larger than the observational noise appear at the minimum-rising branch-maximum phase of the pulsation, which most probably arise from some stochastic/chaotic behaviour of the pulsation/modulation. The Fourier parameters of the mean light curve differ significantly from the averages of the Fourier parameters of the observed light curves in the different phases of the Blazhko cycle. Consequently, the mean light curve of MW Lyrae never matches its actual light variation. The Phi_21, Phi_31 phase differences in different phases of the modulation show unexpected stability during the Blazhko cycle. A new phenomenological description of the light curve variation is defined that separates the amplitude and phase (period) modulations utilising the phase coherency of the lower order Fourier phases.



rate research

Read More

233 - J. Jurcsik , Zs. Hurta , A. Sodor 2009
DM Cyg, a fundamental mode RRab star was observed in the 2007 and 2008 seasons in the frame of the Konkoly Blazhko Survey. Very small amplitude light curve modulation was detected with 10.57 d modulation period. The maximum brightness and phase variations do not exceed 0.07 mag and 7 min, respectively. In spite of the very small amplitude of the modulation, beside the frequency triplets characterizing the Fourier spectrum of the light curve two quintuplet components were also identified. The accuracy and the good phase coverage of our observations made it possible to analyse the light curves at different phases of the modulation separately. Utilizing the IP method (Sodor, Jurcsik and Szeidl, 2009) we could detect very small systematic changes in the global mean physical parameters of DM Cyg during its Blazhko cycle. The detected changes are similar to what we have already found for a large modulation amplitude Blazhko variable MW Lyrae. The amplitudes of the detected changes in the physical parameters of DM Cyg are only about 10% of that what have been found in MW Lyr. This is in accordance with its small modulation amplitude being about one tenth of the modulation amplitude of MW Lyr.
The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.
145 - R. Szabo 2013
The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, like extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts now provide us with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these lines I present the latest efforts and advances from the theoretical point of view. Lastly, amplitude variations in Cepheids are discussed.
We present the results of a photometry campaign of TU Com performed over a five-year time span. The analysis showed that the possible Blazhko period of 75 days published by the General Catalogue of Variable Stars is not correct. We identified two Blazhko periods of 43.6 and 45.5 days. This finding is based on measurement of 124 light maxima. A spectral analysis of the complete light curve confirmed these two periods. Besides the Blazhko amplitude and phase modulations, another long term periodic phase variation has been identified. This long term periodic variation affects the times of maximum light only and can be attributed to a light-travel time effect due to orbital motion of a binary system. The orbital parameters have been estimated by a nonlinear least-square fit applied to the set of (O-C) values. The Levenberg-Marquart algorithm has been used to perform the nonlinear least-square fit. The tentative orbital parameters include an orbital period of 1676 days, a minimal semi-major axis of 1.55 AU and a small eccentricity of 0.22. The orbital parameter estimation also used 33 (O-C) values obtained from the SWASP survey database. Spectroscopic radial velocity measurements are needed to confirm this binarity. If confirmed, TU Com would be the first Blazhko RR Lyrae star detected in a binary system.
We present the results of collaborative observations of three RR Lyrae stars (CX Lyr, NU Aur and VY CrB) which have a strong Blazhko effect. This work has been initiated and performed in the framework of the GEOS RR Lyr Survey (Groupe Europeen dObservations Stellaires). From the measured light curves, we have determined the times and the magnitudes at maximum. The times of maxima have been compared to ephemerides to obtain the (O-C) values and from a period analysis of these (O-C) values, the Blazhko period is derived. The Blazhko periods of NU Aur (114.8 days) and VY CrB (32.3 days) are reported here for the first time and a more accurate period for CX Lyr (68.3 days) has been obtained. The three stars are subject to strong Blazhko effect, but this effect has different characteristics for each of them. When we compare the variations of magnitude at maximum and variations of (O-C) values with respect to the Blazhko phase, these variations are either in phase, in opposition, or even in quadrature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا