Do you want to publish a course? Click here

Gate complexity using Dynamic Programming

213   0   0.0 ( 0 )
 Added by Srinivas Sridharan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relationship between efficient quantum gate synthesis and control theory has been a topic of interest in the quantum control literature. Motivated by this work, we describe in the present article how the dynamic programming technique from optimal control may be used for the optimal synthesis of quantum circuits. We demonstrate simulation results on an example system on SU(2), to obtain plots related to the gate complexity and sample paths for different logic gates.



rate research

Read More

Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished via noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols--quantum repeater protocols--can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing new, more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final state fidelity for preparing long distance entangled states.
We propose a discretization of the optimality principle in dynamic programming based on radial basis functions and Shepards moving least squares approximation method. We prove convergence of the approximate optimal value function to the true one and present several numerical experiments.
In this paper we study quantum algorithms for NP-complete problems whose best classical algorithm is an exponential time application of dynamic programming. We introduce the path in the hypercube problem that models many of these dynamic programming algorithms. In this problem we are asked whether there is a path from $0^n$ to $1^n$ in a given subgraph of the Boolean hypercube, where the edges are all directed from smaller to larger Hamming weight. We give a quantum algorithm that solves path in the hypercube in time $O^*(1.817^n)$. The technique combines Grovers search with computing a partial dynamic programming table. We use this approach to solve a variety of vertex ordering problems on graphs in the same time $O^*(1.817^n)$, and graph bandwidth in time $O^*(2.946^n)$. Then we use similar ideas to solve the travelling salesman problem and minimum set cover in time $O^*(1.728^n)$.
This paper addresses the issue of data injection attacks on control systems. We consider attacks which aim at maximizing system disruption while staying undetected in the finite horizon. The maximum possible disruption caused by such attacks is formulated as a non-convex optimization problem whose dual problem is a convex semi-definite program. We show that the duality gap is zero using S-lemma. To determine the optimal attack vector, we formulate a soft-constrained optimization problem using the Lagrangian dual function. The framework of dynamic programming for indefinite cost functions is used to solve the soft-constrained optimization problem and determine the attack vector. Using the Karush-Kuhn-Tucker conditions, we also provide necessary and sufficient conditions under which the obtained attack vector is optimal to the primal problem.
Quantum error correction (QEC) is an essential element of physical quantum information processing systems. Most QEC efforts focus on extending classical error correction schemes to the quantum regime. The input to a noisy system is embedded in a coded subspace, and error recovery is performed via an operation designed to perfectly correct for a set of errors, presumably a large subset of the physical noise process. In this paper, we examine the choice of recovery operation. Rather than seeking perfect correction on a subset of errors, we seek a recovery operation to maximize the entanglement fidelity for a given input state and noise model. In this way, the recovery operation is optimum for the given encoding and noise process. This optimization is shown to be calculable via a semidefinite program (SDP), a well-established form of convex optimization with efficient algorithms for its solution. The error recovery operation may also be interpreted as a combining operation following a quantum spreading channel, thus providing a quantum analogy to the classical diversity combining operation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا