Do you want to publish a course? Click here

AstraLux - the Calar Alto 2.2-m telescope Lucky Imaging camera

100   0   0.0 ( 0 )
 Added by Felix Hormuth
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

AstraLux is a Lucky Imaging camera for the Calar Alto 2.2-m telescope, based on an electron-multiplying high speed CCD. By selecting only the best 1-10% of several thousand short exposure frames, AstraLux provides nearly diffraction limited imaging capabilities in the SDSS i and z filters over a field of view of 24x24 arcseconds. By choosing commercially available components wherever possible, the instrument could be built in short time and at comparably low cost. We briefly present the instrument design, the data reduction pipeline, and summarise the performance and characteristics

rate research

Read More

AstraLux is the Lucky Imaging camera for the Calar Alto 2.2-m telescope, based on an electron-multiplying high speed CCD. By selecting only the best 1-10% of several thousand short exposure frames, AstraLux provides nearly diffraction limited imaging capabilities in the SDSS i and z filters over a field of view of 24x24 arcseconds. By choosing commercially available components wherever possible, the instrument could be built in short time and at comparably low cost. We present the instrument design, the data reduction pipeline, and summarise the performance and characteristics
PANIC is a wide-field NIR camera, which is currently under development for the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope (0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about 77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat folding mirrors with diameters up to 282 mm and nine lenses with diameters between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters distributed over four filter wheels. Narrow band (1%) filters can be used. The instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm and 3 mm respectively.
111 - J.-S. Huang 2001
We present K-band number counts for the faint galaxies in the Calar Alto Deep Imaging Survey (CADIS). We covered 4 CADIS fields, a total area of 0.2deg^2, in the broad band filters B, R and K. We detect about 4000 galaxies in the K-band images, with a completeness limit of K=19.75mag, and derive the K-band galaxy number counts in the range of 14.25 < K < 19.75mag. This is the largest medium deep K-band survey to date in this magnitude range. The B- and R-band number counts are also derived, down to completeness limits of B=24.75mag and R=23.25mag. The K-selected galaxies in this magnitude range are of particular interest, since some medium deep near-infrared surveys have identified breaks of both the slope of the K-band number counts and the mean B-K color at K=17sim18mag. There is, however, a significant disagreement in the K-band number counts among the existing surveys. Our large near-infrared selected galaxy sample allows us to establish the presence of a clear break in the slope at K=17.0mag from dlogN/dm = 0.64 at brighter magnitudes to dlogN/dm = 0.36 at the fainter end. We construct no-evolution and passive evolution models, and find that the passive evolution model can simultaneously fit the B-, R- and K-band number counts well. The B-K colors show a clear trend to bluer colors for K > 18mag. We also find that most of the K=18-20mag galaxies have a B-K color bluer than the prediction of a no-evolution model for an L_* Sbc galaxy, implying either significant evolution, even for massive galaxies, or the existence of an extra population of small galaxies.
100 - N. Lodieu IAC 2009
The knowledge of the binary properties of metal-poor and solar-metallicity stars can shed light on the potential differences between the formation processes responsible for both types of objects. The aim of the project is to determine the binary properties (separation, mass ratio, frequency of companions) for M subdwarfs, the low-metallicity counterparts of field M dwarfs, and investigate any potential differences between both populations. We have obtained high-resolution imaging in the optical for a sample of 24 early-M subdwarfs and nine extreme subdwarfs with the ``Lucky Imaging technique using the AstraLux instrument on the Calar Alto 2.2-m telescope. We are sensitive to companions at separations larger than 0.1 arcsec and differences of ~2 magnitudes at 0.1 arcsec and ~5 mag at 1 arcsec. We have found no companion around the 24 subdwarfs under study and one close binary out of nine extreme subdwarfs. A second image of LHS 182 taken three months later with the same instrument confirms the common proper motion of the binary separated by about 0.7 arcsec. Moreover, we do not confirm the common proper motion of the faint source reported by Riaz and collaborators at ~2 arcsec from LHS 1074. We derive a binary frequency of 3+/-3% for M subdwarfs from our sample of 33 objects for separations larger than about five astronomical units. Adding to our sample the additional 28 metal-poor early-M dwarfs observed with the Hubble Space Telescope by Riaz and collaborators, we infer a binary fraction of 3.7+/-2.6% (with a 1 sigma confidence limit), significantly lower than the fraction of resolved binary M dwarfs (~20%) over the same mass and separation ranges (abridged).
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4% and 1.2% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا