Deconfinement phase transition in hybrid neutron stars from the Brueckner theory with three-body forces and a quark model with chiral mass scaling


Abstract in English

We study the properties of strange quark matter in equilibrium with normal nuclear matter. Instead of using the conventional bag model in quark sector, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates. In nuclear matter, we adopt the equation of state from the Brueckner-Bethe-Goldstone approach with three-body forces. It is found that the mixed phase can occur, for a reasonable confinement parameter, near the normal nuclear saturation density, and goes over into pure quark matter at about 5 times the saturation. The onset of mixed and quark phases is compatible with the observed class of low-mass neutron stars, but it hinders the occurrence of kaon condensation.

Download