Do you want to publish a course? Click here

Single top quark photoproduction at the LHC

263   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

High-energy photon-proton interactions at the LHC offer interesting possibilities for the study of the electroweak sector up to TeV scale and searches for processes beyond the Standard Model. An analysis of the W associated single top photoproduction has been performed using the adapted MadGraph/MadEvent and CalcHEP programs interfaced to the Pythia generator and a fast detector simulation program. Event selection and suppression of main backgrounds have been studied. A comparable sensitivity to |V_{tb}| to those obtained using the standard single top production in pp collisions has been achieved already for 10 fb^{-1} of integrated luminosity. Photoproduction at the LHC provides also an attractive framework for observation of the anomalous production of single top due to Flavour-Changing Neutral Currents. The sensitivity to anomalous coupling parameters, k_{tugamma} and k_{tcgamma} is presented and indicates that stronger limits can be placed on anomalous couplings after 1 fb^{-1}.



rate research

Read More

High-energy photon-proton interactions at the LHC offer interesting possibilities for the study of top properties. Using a fast simulation of a LHC-like detector, first results on the measurement of the |V_{tb}| matrix element using Wt photoproduction are presented. Anomalous photoproduction of single top due to Flavour-Changing Neutral Currents permits to improve the current limits on the coupling parameters, k_{tugamma} and k_{tcgamma} after only 1 fb^{-1}.
168 - Jorgen Dhondt 2007
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discussed according to state-of-the-art simulation of both physics and detectors. An overview is given of the most important results with emphasis on the expected improvements in our understanding of physics connected to the top quark.
This paper provides a review of the experimental studies of processes with a single top quark at the Tevatron proton-antiproton collider and the LHC proton-proton collider. Single top-quark production in the t-channel process has been measured at both colliders. The s-channel process has been observed at the Tevatron, and its rate has been also measured at the center-of-mass energy of 8 TeV at the LHC in spite of the comparatively harsher background contamination. LHC data also brought the observation of the associated production of a single top quark with a W boson as well as with a Z boson. The Cabibbo-Kobayashi-Maskawa matrix element |Vtb| is extracted from the single-top-quark production cross sections, and t-channel events are used to measure several properties of the top quark and set constraints on models of physics beyond the Standard Model. Rare final states with a single top quark are searched for, as enhancements in their production rates, if observed, would be clear signs of new physics.
We present a detailed study of Higgs boson production in association with a single top quark at the LHC, at next-to-leading order accuracy in QCD. We consider total and differential cross sections, at the parton level as well as by matching short distance events to parton showers, for both t-channel and s-channel production. We provide predictions relevant for the LHC at 13 TeV together with a thorough evaluation of the residual uncertainties coming from scale variation, parton distributions, strong coupling constant and heavy quark masses. In addition, for t-channel production, we compare results as obtained in the 4-flavour and 5-flavour schemes, pinning down the most relevant differences between them. Finally, we study the sensitivity to a non-standard-model relative phase between the Higgs couplings to the top quark and to the weak bosons.
We present an improved determination of the up- and down-quark distributions in the proton using recent data on charged lepton asymmetries from $W^pm$ gauge-boson production at the LHC and Tevatron. The analysis is performed in the framework of a global fit of parton distribution functions. The fit results are consistent with a non-zero iso-spin asymmetry of the sea, $x(bar d - bar u)$, at small values of Bjorken $xsim 10^{-4}$ indicating a delayed onset of the Regge asymptotics of a vanishing $(bar d - bar u)$-asymmetry at small-$x$. We compare with up- and down-quark distributions available in the literature and provide accurate predictions for the production of single top-quarks at the LHC, a process which can serve as a standard candle for the light quark flavor content of the proton.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا