Do you want to publish a course? Click here

The Superconducting Gap Behavior in the Antiferromagnetic Nickel-Borocarbide Compounds RNi2B2C (R=Dy, Ho, Er, Tm) Studied by Point-Contacts Spectroscopy

126   0   0.0 ( 0 )
 Added by Yu. G. Naidyuk
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

An general survey of the superconducting (SC) gap study in the title compounds by point-contact (PC) spectroscopy is presented. The SC gap was determined from dV/dI of PCs employing the well-known theory of conductivity for normal metal-superconductor PCs accounting Andreev reflection. The theory was modified by including pair-breaking effects considering the presence of magnetic rare-earth ions. A possible multiband structure of these compounds was also taken into account. The PC study of the gap in the Er-compound (TN=6K<Tc=11K) gives =evidence for the presence of two SC gaps. Additionally, a distinct decrease of both gaps is revealed for R = Er in the antiferromagnetic (AF) state. For R = Tm (TN=1.5K<Tc=10.5K) a decrease of the SC gap is observed below 4-5K, while for R = Dy (TN=10.5K>Tc=6.5K) the SC gap has a BCS-like dependence in the AF state. The SC gap for R = Ho (TN=5.2K<Tc=8.5K) exhibits below T*=5.6K a single-band BCS-like dependence vanishing above T*, where a specific magnetic order occurs. The difference in the SC gap behavior in the title compounds is attributed to different AF ordering.



rate research

Read More

An overview of the recent efforts in point-contact (PC) spectroscopy of the nickel borocarbide superconductors RNi2B2C in the normal and superconducting (SC) state is given. The results of measurements of the PC electron- boson(phonon) interaction spectral function are presented. Phonon maxima and crystalline-electric-field (CEF) excitations are observed in the PC spectra of compounds with R=Dy, Ho, Er and Tm, while for R=Y a dominant phonon maximum around 12 meV is characteristic. Additionally, non-phonon and non-CEF maxima are observed near 3 meV in R=Ho and near 6 meV in R=Dy. Directional PC study of the SC gap gives evidence for the multi-band nature of superconductivity in R=Y, Lu. At low temperature the SC gap in R=Ho exhibits a standard single-band BCS-like dependence, which vanishes above T_c^*= 5.6K< T_c=8.5K, where a specifc magnetic ordering starts to play a role. For R=Tm (T_c=10.5 K) a decrease of the SC gap is observed below 5 K.
243 - Yun Wu , Yongbin Lee , Tai Kong 2017
We use high resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the $Gamma$ point and two intersecting electron pockets at the $X$ point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the $Gamma$ point. Due to the lanthanide contraction, the unit cell of different rare-earth monoantimonides shrinks when changing rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which is demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the $X$ point seem to be touching the valence bands, forming a four-fold degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the $X$ point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the $Gamma$ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.
The antiferromagnetic transition is investigated in the rare-earth (R) tritelluride RTe3 family of charge density wave (CDW) compounds via specific heat, magnetization and resistivity measurements. Observation of the opening of a superzone gap in the resistivity of DyTe3 indicates that additional nesting of the reconstructed Fermi surface in the CDW state plays an important role in determining the magnetic structure.
X-ray circular magnetic dichroism (XMCD), longitudinal ($chi_{ac}$) and transverse (TS) ac magnetic susceptibility have been measured in several members of the $R$Co$_2$ series ($R$ = Dy, Ho, and Tm) as a function of temperature and applied magnetic field. We show that parimagnetism is a general behavior along the $R$Co$_2$ ferrimagnetic series ($R$ being a heavy rare earth ion). XMCD results evidence the presence of two compensation temperatures, defining two different parimagnetic configurations, which is a fully unexpected result. The inverse $chi_{ac}$ curve exhibits a deviation from Curie-Weiss behavior which is recovered under applied magnetic field. The large excess of polarizability above the critical temperature proves the existence of an enhanced effective moment due to the presence of short range magnetic correlations, which are also observed in TS measurements. The combination of TS and XMCD measurements allows to depict new magnetic phase diagrams for the $R$Co$_2$ series. A new scenario allowing to understand the observed phenomenology as a Griffiths phase-like behavior is proposed, where the amorphous $R$Co$_2$ represents the undiluted system case.
The magnetoelectric effect in the system $RAl_3(BO_3)_4$ ($R$ = Tb, Ho, Er, Tm) is investigated between 3 K and room temperature and at magnetic fields up to 70 kOe. We show a systematic increase of the magnetoelectric effect with decreasing magnetic anisotropy of the rare earth moment. A giant magnetoelectric polarization is found in the magnetically (nearly) isotropic $HoAl_3(BO_3)_4$. The polarization value in transverse field geometry at 70 kOe reaches 3600 $mu C/m^2$ which is significantly higher than reported values for the field-induced polarization of linear magnetoelectric or even multiferroic compounds. The results indicate a very strong coupling of the f-moments to the lattice. They further indicate the importance of the field-induced ionic displacements in the unit cell resulting in a polar distortion and a change in symmetry on a microscopic scale. The system $RAl_3(BO_3)_4$ could be interesting for the technological utilization of the high-field magnetoelectric effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا