Do you want to publish a course? Click here

Rescattering Effect and Near Threshold Enhancement of $pbar p$ System

137   0   0.0 ( 0 )
 Added by J. P. Ma
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We study the observed enhancement of a $pbar p$ system near the threshold in the process $J/psi to gamma pbar p$ and $e^+ e^- to pbar p$. From early studies the enhancement can be explained by final state interactions, which are in general taken into account with some potential models. In this work we offer a simple approach within quantum field theory to explain the observed enhancement. We point out that among different final state interactions the rescattering in a $Nbar N$ system though exchange of $pi$ is the most important. The effects of the rescattering is completely fixed by the well-known coupling $g_{pi NN}$. Our results show that the enhancement in $J/psi to gamma pbar p$ and $e^+ e^- to pbar p$ can be well described with the rescattering effects.



rate research

Read More

135 - G.Y. Chen , H.R. Dong , J.P. Ma 2010
The observed enhancement of $pbar p$-production near the threshold in radiative decays of $J/psi$ and $e^+e^-$-annihilations can be explained with final state interactions among the produced $Nbar N$ system, where the enhancement is essentially determined by $Nbar N$ elastic scattering amplitudes. We propose to use an effective theory for interactions in a $Nbar N$ system near its threshold. The effective theory is similar to the well-known one for interactions in a $NN$ system but with distinctions. It is interesting to note that in the effective theory some corrections to scattering amplitudes at tree-level can systematically be summed into a simple form. These corrections are from rescattering processes. With these corrected amplitudes we are able to describe the enhancement near the threshold in radiative decays of $J/psi$ and $e^+e^-$-annihilations, and the $pbar p$ elastic scattering near the threshold.
The p + 6Li --> eta + 7Be reaction has been investigated with an emphasis on the eta meson and 7Be interaction in the final state. Considering the 6Li and 7Be nuclei to be alpha-d and alpha-3He clusters respectively, the reaction is modelled to proceed via the p + d [alpha] --> 3He [alpha] + eta reaction with the alpha remaining a spectator. The eta meson interacts with 7Be via multiple scatterings on the 3He and alpha clusters inside 7Be. The individual eta-3He and eta-alpha scatterings are evaluated using few body equations for the eta-3N and eta-4N systems with a coupled channel eta-N interaction as an input. Calculations including four low-lying states of 7Be lead to a double hump structure in the total cross section corresponding to the $L = 1 (J = (1/2)^-, (3/2)^-)$ and $L = 3 (J = (5/2)^-, (7/2)^-)$ angular momentum states. The humps arise due to the off-shell rescattering of the eta meson on the 7Be nucleus in the final state.
105 - Xiao-Hai Liu , Gang Li 2016
We investigate the invariant mass distributions of $B_spi$ via different rescattering processes. Because the triangle singularity (TS) could be present for a very broad incident energy region, it can be expected that the TS peaks may simulate the resonance-like bump $X(5568)$ observed by the D0 collaboration. The highly process-dependent characteristic of TS mechanism offers a criterion to distinguish it from other dynamic mechanisms.
One of the main issues in hadron spectroscopy is to identify the origin of threshold or near-threshold enhancement. Prior to our study, there is no straightforward way of distinguishing even the lowest channel threshold-enhancement of the nucleon-nucleon system using only the cross-sections. The difficulty lies in the proximity of either a bound or virtual state pole to the threshold which creates an almost identical structure in the scattering region. Identifying the nature of the pole causing the enhancement falls under the general classification problem and supervised machine learning using a feed-forward neural network is known to excel in this task. In this study, we discuss the basic idea behind deep neural network and how it can be used to identify the nature of the pole causing the enhancement. The applicability of the trained network can be explored by using an exact separable potential model to generate a validation dataset. We find that within some acceptable range of the cut-off parameter, the neural network gives high accuracy of inference. The result also reveals the important role played by the background singularities in the training dataset. Finally, we apply the method to nucleon-nucleon scattering data and show that the network was able to give the correct nature of pole, i.e. virtual pole for ${}^1S_0$ partial cross-section and bound state pole for ${}^3S_0$.
We examine the possibility to extract information about the DN and DbarN interactions from the pbar d to D Dbar N reaction. We utilize the notion that the open-charm mesons are first produced in the annihilation of the antiproton on one nucleon in the deuteron and subsequently rescatter on the other (the spectator) nucleon. The latter process is then exploited for investigating the DN and DbarN interactions. We study different methods for isolating the contributions from the D^0p and D^-p rescattering terms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا