Do you want to publish a course? Click here

Chaos Pass Filter: Linear Response of Synchronized Chaotic Systems

406   0   0.0 ( 0 )
 Added by Johannes Kestler
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The linear response of synchronized chaotic units with delayed couplings and feedback to small external perturbations is investigated in the context of communication with chaos synchronization. For iterated chaotic maps, the distribution of distances is calculated numerically and, for some special cases, analytically as well. Depending on model parameters, this distribution has power law tails leading to diverging moments of distances in the region of synchronization. The corresponding linear equations have multiplicative and additive noise due to perturbations and chaos. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. For perturbation from a binary message the bit error rate is calculated. The bit error rate is not related to the transverse Lyapunov exponents, and it can be reduced when additional noise is added to the transmitted signal. For some special cases, the bit error rate as a function of coupling strength has the structure of a devils staircase, related to an iterated function system. Finally, the security of communication is discussed by comparing uni- and bi-directional couplings.



rate research

Read More

The linear response of synchronized time-delayed chaotic systems to small external perturbations, i.e., the phenomenon of chaos pass filter, is investigated for iterated maps. The distribution of distances, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transfered signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments of distances. This is a consequence of multiplicative and additive noise in the corresponding linear equations due to chaos and external perturbations. The linear response can also be quantified by the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is calculated analytically and numerically. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devils staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bi-directionally coupled chain of three units can completely filtered out the perturbation. Thus the second moment and the bit error rate become zero.
We study synchronization of non-diffusively coupled map networks with arbitrary network topologies, where the connections between different units are, in general, not symmetric and can carry both positive and negative weights. We show that, in contrast to diffusively coupled networks, the synchronous behavior of a non-diffusively coupled network can be dramatically different from the behavior of its constituent units. In particular, we show that chaos can emerge as synchronized behavior although the dynamics of individual units are very simple. Conversely, individually chaotic units can display simple behavior when the network synchronizes. We give a synchronization criterion that depends on the spectrum of the generalized graph Laplacian, as well as the dynamical properties of the individual units and the interaction function. This general result will be applied to coupled systems of tent and logistic maps and to two models of neuronal dynamics. Our approach yields an analytical understanding of how simple model neurons can produce complex collective behavior through the coordination of their actions.
The goal of response theory, in each of its many statistical mechanical formulations, is to predict the perturbed response of a system from the knowledge of the unperturbed state and of the applied perturbation. A new recent angle on the problem focuses on providing a method to perform predictions of the change in one observable of the system by using the change in a second observable as a surrogate for the actual forcing. Such a viewpoint tries to address the very relevant problem of causal links within complex system when only incomplete information is available. We present here a method for quantifying and ranking the predictive ability of observables and use it to investigate the response of a paradigmatic spatially extended system, the Lorenz 96 model. We perturb locally the system and we then study to what extent a given local observable can predict the behaviour of a separate local observable. We show that this approach can reveal insights on the way a signal propagates inside the system. We also show that the procedure becomes more efficient if one considers multiple acting forcings and, correspondingly, multiple observables as predictors of the observable of interest.
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunovs direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lv system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a thermal bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا