Do you want to publish a course? Click here

A new method of measuring the cluster peculiar velocity power spectrum

113   0   0.0 ( 0 )
 Added by Hume A. Feldman
 Publication date 2008
  fields Physics
and research's language is English
 Authors Pengjie Zhang




Ask ChatGPT about the research

We propose to use spatial correlations of the kinetic Sunyaev-Zeldovich (KSZ) flux as an estimator of the peculiar velocity power spectrum. In contrast with conventional techniques, our new method does not require measurements of the thermal SZ signal or the X-ray temperature. Moreover, this method has the special advantage that the expected systematic errors are always sub-dominant to statistical errors on all scales and redshifts of interest. We show that future large sky coverage KSZ surveys may allow a peculiar velocity power spectrum estimates of an accuracy reaching ~10%.



rate research

Read More

49 - Richard Watkins 2007
We constrain the velocity power spectrum shape parameter $Gamma$ in linear theory using the nine bulk-flow and shear moments estimated from four recent peculiar velocity surveys. For each survey, a likelihood function for $Gamma$ was found after marginalizing over the power spectrum amplitude $sigma_8Omega_m^{0.6}$ using constraints obtained from comparisons between redshift surveys and peculiar velocity data. In order to maximize the accuracy of our analyses, the velocity noise $sigma_*$ was estimated directly for each survey. A statistical analysis of the differences between the values of the moments estimated from different surveys showed consistency with theoretical predictions, suggesting that all the surveys investigated reflect the same large scale flows. The peculiar velocity surveys were combined into a composite survey yielding the constraint $Gamma=0.13^{+0.09}_{-0.05}$. This value is lower than, but consistent with, values obtained using redshift surveys and CMB data.
Redshift-space distortions (RSD) generically affect any spatially-dependent observable that is mapped using redshift information. The effect on the observed clustering of galaxies is the primary example of this. This paper is devoted to another example: the effect of RSD on the apparent peculiar motions of tracers as inferred from their positions in redshift space (i.e. the observed distance). Our theoretical study is motivated by practical considerations, mainly, the direct estimation of the velocity power spectrum, which is preferably carried out using the tracers redshift-space position (so as to avoid uncertainties in distance measurements). We formulate the redshift-space velocity field and show that RSD enters as a higher-order effect. Physically, this effect may be interpreted as a dissipative correction to the usual perfect-fluid description of dark matter. We show that the effect on the power spectrum is a damping on relatively large, quasilinear scales ($k>0.01,h,{rm Mpc}^{-1}$), as was observed, though unexplained, in $N$-body simulations elsewhere. This paper presents two power spectrum models for the the peculiar velocity field in redshift space, both of which can be considered velocity analogues of existing clustering models. In particular, we show that the Finger-of-God effect, while also present in the velocity field, cannot be entirely blamed for the observed damping in simulations. Our work provides some of the missing modelling ingredients required for a density--velocity multi-tracer analysis, which has been proposed for upcoming redshift surveys.
The large-scale structure of the Universe should soon be measured at high redshift during the Epoch of Reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluctuations in the intergalactic medium (IGM) during the EoR. These may be fruitfully combined with separate efforts to measure large-scale emission fluctuations from galactic lines such as [CII], CO, H-$alpha$, and Ly-$alpha$ during the same epoch. The large scale power spectrum of each line encodes important information about reionization, with the 21 cm power spectrum providing a relatively direct tracer of the ionization history. Here we show that the large scale 21 cm power spectrum can be extracted using only cross-power spectra between the 21 cm fluctuations and each of two separate line-intensity mapping data cubes. This technique is more robust to residual foregrounds than the usual 21 cm auto-power spectrum measurements and so can help in verifying auto-spectrum detections. We characterize the accuracy of this method using numerical simulations and find that the large-scale 21 cm power spectrum can be inferred to an accuracy of within 5% for most of the EoR, reaching 0.6% accuracy on a scale of $ksim0.1,text{Mpc}^{-1}$ at $left< x_i right> = 0.36$ ($z = 8.34$ in our model). An extension from two to $N$ additional lines would provide $N(N-1)/2$ cross-checks on the large-scale 21 cm power spectrum. This work strongly motivates redundant line-intensity mapping surveys probing the same cosmological volumes.
In this paper, we develop the method of analyzing the velocity field of cosmic matter with a multiresolution decomposition. This is necessary in calculating the redshift distortion of power spectrum in the discrete wavelet transform (DWT) representation. We show that, in the DWT analysis, the velocity field can be described by discrete variables, which are given by assignment of the number density and velocity into the DWT modes. These DWT variables are complete and not redundant. In this scheme, the peculiar velocity and pairwise velocity of galaxies or particles are given by field variables. As a consequence, the velocity dispersion (VD) and pairwise velocity dispersion (PVD) are no longer measured by number-counting or pair-counting statistic, but with the ensemble of the field variables, and therefore, they are free from the bias due to the number-counting and pair-counting. We analyzed the VD and PVD of the velocity fields given by the N-body simulation for models of the SCDM, $tau$CDM and $Lambda$CDM. The spectrum (scale-dependence) of the VD and PVD show that the length scale of the two-point correlation of the velocity field is as large as few tens h$^{-1}$ Mpc. Although the VD and PVD show similar behavior in some aspects, they are substantially different from each other. The VD-to-PVD ratio shows the difference between the scale-dependencies of the VD and PVD. More prominent difference between the VD and PVD is shown by probability distribution function. The one-point distribution of peculiar velocity is approximately exponential, while the pairwise velocitys is lognormal, i.e. of long tail. This difference indicates that the cosmic velocity field is typically intermittent.
We present a new method for fitting peculiar velocity models to complete flux limited magnitude-redshifts catalogues, using the luminosity function of the sources as a distance indicator.The method is characterised by its robustness. In particular, no assumptions are made concerning the spatial distribution of sources and their luminosity function. Moreover, selection effects in redshift are allowed. Furthermore the inclusion of additional observables correlated with the absolute magnitude -- such as for example rotation velocity information as described by the Tully-Fisher relation -- is straightforward. As an illustration of the method, the predicted IRAS peculiar velocity model characterised by the density parameter beta is tested on two samples. The application of our method to the Tully-Fisher MarkIII MAT sample leads to a value of beta=0.6 pm 0.125, fully consistent with the results obtained previously by the VELMOD and ITF methods on similar datasets. Unlike these methods however, we make a very conservative use of the Tully-Fisher information. Specifically, we require to assume neither the linearity of the Tully-Fisher relation nor a gaussian distribution of its residuals. Moreover, the robustness of the method implies that no Malmquist corrections are required. A second application is carried out, using the fluxes of the IRAS 1.2 Jy sample as the distance indicator. In this case the effective depth of the volume in which the velocity model is compared to the data is almost twice the effective depth of the MarkIII MAT sample. The results suggest that the predicted IRAS velocity model, while successful in reproducing locally the cosmic flow, fails to describe the kinematics on larger scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا