No Arabic abstract
The problem of vortex pair motion in two-dimensional plane radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of two corotating vortexes in a quiescent environment transforms into motion along a logarithmic spiral in the presence of radial flow. The problem may have applications in astrophysics and geophysics.
The advection of passive tracers in a system of 4 identical point vortices is studied when the motion of the vortices is chaotic. The phenomenon of vortex-pairing has been observed and statistics of the pairing time is computed. The distribution exhibits a power-law tail with exponent $sim 3.6$ implying finite average pairing time. This exponents is in agreement with its computed analytical estimate of 3.5. Tracer motion is studied for a chosen initial condition of the vortex system. Accessible phase space is investigated. The size of the cores around the vortices is well approximated by the minimum inter-vortex distance and stickiness to these cores is observed. We investigate the origin of stickiness which we link to the phenomenon of vortex pairing and jumps of tracers between cores. Motion within the core is considered and fluctuations are shown to scale with tracer-vortex distance $r$ as $r^{6}$. No outward or inward diffusion of tracers are observed. This investigation allows the separation of the accessible phase space in four distinct regions, each with its own specific properties: the region within the cores, the reunion of the periphery of all cores, the region where vortex motion is restricted and finally the far-field region. We speculate that the stickiness to the cores induced by vortex-pairings influences the long-time behavior of tracers and their anomalous diffusion.
We performed an experimental observation on the spontaneous imbibition of water in a porous media in a radial Hele-Shaw cell and confirmed Washburns law, where r is distance and t is time. Spontaneous imbibition with a radial interface window followed scaling dynamics when the front invaded into the porous media. We found a growth exponent (b{eta}=0.6) that was independent of the pressure applied at the liquid inlet. The roughness exponent decreased with an increase in pressure. The roughening dynamics of two dimensional spontaneous radial imbibition obey Family-Vicsek scaling, which is different from that with a one-dimensional planar interface window.
We discuss the statistical properties of a single vortex line in a perfect fluid. The partition function is calculated up to the end in the thin vortex approximation. It turns out that corresponding theory is renormalizable, and the renormalization law for the core size of the vortex is found. The direction of renormalization group flow makes the thin vortex approximation to be valid for the interest cases and this result does not depend on the choice of infrared regularization. The expressions for some gauge-invariant correlators are obtained to demonstrate the developed formalism at work.
In a cylindrical container filled with an eutectic GaInSn alloy, an electro-vortex flow (EVF) is generated by the interaction of a non-uniform current with its own magnetic field. In this paper, we investigate the EVF phenomenon numerically and experimentally. Ultrasound Doppler Velocimetry (UDV) is applied to measure the velocity field in a cylindrical vessel. Second, we enhance an old numerical solver by taking into account the effect of Joule heating, and employ it for the numerical simulation of the EVF experiment. Special focus is laid on the role of the magnetic field, which is the combination of the current induced magnetic field and the external geomagnetic field. For getting a higher computational efficiency, the so-called parent-child mesh technique is applied in OpenFOAM when computing the electric potential, the current density and the temperature in the coupled solid-liquid conductor system. The results of the experiment are in good agreement with those of the simulation. This study may help to identify the factors that are essential for the EVF phenomenon, and for quantifying its role in liquid metal batteries.
Hairpin vortices are widely studied as an important structural aspect of wall turbulence. The present work describes, for the first time, nonlinear traveling wave solutions to the Navier--Stokes equations in the channel flow geometry -- exact coherent states (ECS) -- that display hairpin-like vortex structure. This solution family comes into existence at a saddle-node bifurcation at Reynolds number Re=666. At the bifurcation, the solution has a highly symmetric quasistreamwise vortex structure similar to that reported for previously studied ECS. With increasing distance from the bifurcation, however, both the upper and lower branch solutions develop a vortical structure characteristic of hairpins: a spanwise-oriented head near the channel centerplane where the mean shear vanishes connected to counter-rotating quasistreamwise legs that extend toward the channel wall. At Re=1800, the upper branch solution has mean and Reynolds shear-stress profiles that closely resemble those of turbulent mean profiles in the same domain.