No Arabic abstract
In this paper we perform a full gauge-fixing of the phase space of four dimensional General Relativity (GR) of Lorentzian signature for the time symmetric case, using the CDJ variables. In particular, the Gauss law constraint in the chosen gauge meets the conditions of the Cauchy-Kovalevskaya theorem for first order, quasilinear PDEs. This implies the existence of a unique analytic solution to the initial value constraints problem in some region of 3-space, featuring four free functions per spacetime point. This result constitutes a step toward addressal of the reduced phase space problem of GR.
We discuss the Dirac equation in a curved 5-dimensional spherically symmetric space-time. The angular part of the solutions is thoroughly studied, in a formulation suited for extending to rotating space-times with equal angular momenta. It has a symmetry $SU(2)times U(1)$ and is implemented by the Wigner functions. The radial part forms a Dirac-Schrodinger type equation, and existence of the analytical solutions of the massless and the massive modes is confirmed. The solutions are described by the Jacobi polynomials. Also, the spinor of the both large and small components is obtained numerically. As a direct application of our formulation, we evaluate the spectrum of the Dirac fermion in Einstein-Gauss-Bonnet space-time and the space-time of a boson star.
In this paper we consider a model for gravity in 4-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a 5-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the Loop Quantization framework. The present paper is dedicated to a classical analysis of the models properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einsteins General Relativity with cosmological constant.
The proposed mission Space Atomic Gravity Explorer (SAGE) has the scientific objective to investigate gravitational waves, dark matter, and other fundamental aspects of gravity as well as the connection between gravitational physics and quantum physics using new quantum sensors, namely, optical atomic clocks and atom interferometers based on ultracold strontium atoms.
Within the context of the Ashtekar variables, the Hamiltonian constraint of four-dimensional pure General Relativity with cosmological constant, $Lambda$, is reexpressed as an affine algebra with the commutator of the imaginary part of the Chern-Simons functional, $Q$, and the positive-definite volume element. This demonstrates that the affine algebra quantization program of Klauder can indeed be applicable to the full Lorentzian signature theory of quantum gravity with non-vanishing cosmological constant; and it facilitates the construction of solutions to all of the constraints. Unitary, irreducible representations of the affine group exhibit a natural Hilbert space structure, and coherent states and other physical states can be generated from a fiducial state. It is also intriguing that formulation of the Hamiltonian constraint or Wheeler-DeWitt equation as an affine algebra requires a non-vanishing cosmological constant; and a fundamental uncertainty relation of the form $frac{Delta{V}}{<{V}>}Delta {Q}geq 2pi Lambda L^2_{Planck}$ (wherein $V$ is the total volume) may apply to all physical states of quantum gravity.
De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.