No Arabic abstract
Expander graphs have been recently proposed to construct efficient compressed sensing algorithms. In particular, it has been shown that any $n$-dimensional vector that is $k$-sparse (with $kll n$) can be fully recovered using $O(klogfrac{n}{k})$ measurements and only $O(klog n)$ simple recovery iterations. In this paper we improve upon this result by considering expander graphs with expansion coefficient beyond 3/4 and show that, with the same number of measurements, only $O(k)$ recovery iterations are required, which is a significant improvement when $n$ is large. In fact, full recovery can be accomplished by at most $2k$ very simple iterations. The number of iterations can be made arbitrarily close to $k$, and the recovery algorithm can be implemented very efficiently using a simple binary search tree. We also show that by tolerating a small penalty on the number of measurements, and not on the number of recovery iterations, one can use the efficient construction of a family of expander graphs to come up with explicit measurement matrices for this method. We compare our result with other recently developed expander-graph-based methods and argue that it compares favorably both in terms of the number of required measurements and in terms of the recovery time complexity. Finally we will show how our analysis extends to give a robust algorithm that finds the position and sign of the $k$ significant elements of an almost $k$-sparse signal and then, using very simple optimization techniques, finds in sublinear time a $k$-sparse signal which approximates the original signal with very high precision.
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe performance degradation. In this study, a novel algorithm, termed HISTORY, is proposed. It consists of Hamming support detection and coefficients recovery. The HISTORY algorithm has high recovery accuracy and is robust to strong measurement noise. Numerical results are provided to demonstrate the effectiveness and superiority of the proposed algorithm.
Compressed sensing (CS) or sparse signal reconstruction (SSR) is a signal processing technique that exploits the fact that acquired data can have a sparse representation in some basis. One popular technique to reconstruct or approximate the unknown sparse signal is the iterative hard thresholding (IHT) which however performs very poorly under non-Gaussian noise conditions or in the face of outliers (gross errors). In this paper, we propose a robust IHT method based on ideas from $M$-estimation that estimates the sparse signal and the scale of the error distribution simultaneously. The method has a negligible performance loss compared to IHT under Gaussian noise, but superior performance under heavy-tailed non-Gaussian noise conditions.
Modern image and video compression codes employ elaborate structures existing in such signals to encode them into few number of bits. Compressed sensing recovery algorithms on the other hand use such signals structures to recover them from few linear observations. Despite the steady progress in the field of compressed sensing, structures that are often used for signal recovery are still much simpler than those employed by state-of-the-art compression codes. The main goal of this paper is to bridge this gap through answering the following question: Can one employ a given compression code to build an efficient (polynomial time) compressed sensing recovery algorithm? In response to this question, the compression-based gradient descent (C-GD) algorithm is proposed. C-GD, which is a low-complexity iterative algorithm, is able to employ a generic compression code for compressed sensing and therefore elevates the scope of structures used in compressed sensing to those used by compression codes. The convergence performance of C-GD and its required number of measurements in terms of the rate-distortion performance of the compression code are theoretically analyzed. It is also shown that C-GD is robust to additive white Gaussian noise. Finally, the presented simulation results show that combining C-GD with commercial image compression codes such as JPEG2000 yields state-of-the-art performance in imaging applications.
Compressed sensing (CS) shows that a signal having a sparse or compressible representation can be recovered from a small set of linear measurements. In classical CS theory, the sampling matrix and representation matrix are assumed to be known exactly in advance. However, uncertainties exist due to sampling distortion, finite grids of the parameter space of dictionary, etc. In this paper, we take a generalized sparse signal model, which simultaneously considers the sampling and representation matrix uncertainties. Based on the new signal model, a new optimization model for robust sparse signal reconstruction is proposed. This optimization model can be deduced with stochastic robust approximation analysis. Both convex relaxation and greedy algorithms are used to solve the optimization problem. For the convex relaxation method, a sufficient condition for recovery by convex relaxation is given; For the greedy algorithm, it is realized by the introduction of a pre-processing of the sensing matrix and the measurements. In numerical experiments, both simulated data and real-life ECG data based results show that the proposed method has a better performance than the current methods.
Snapshot compressed sensing (CS) refers to compressive imaging systems in which multiple frames are mapped into a single measurement frame. Each pixel in the acquired frame is a noisy linear mapping of the corresponding pixels in the frames that are combined together. While the problem can be cast as a CS problem, due to the very special structure of the sensing matrix, standard CS theory cannot be employed to study such systems. In this paper, a compression-based framework is employed for theoretical analysis of snapshot CS systems. It is shown that this framework leads to two novel, computationally-efficient and theoretically-analyzable compression-based recovery algorithms. The proposed methods are iterative and employ compression codes to define and impose the structure of the desired signal. Theoretical convergence guarantees are derived for both algorithms. In the simulations, it is shown that, in the cases of both noise-free and noisy measurements, combining the proposed algorithms with a customized video compression code, designed to exploit nonlocal structures of video frames, significantly improves the state-of-the-art performance.