Do you want to publish a course? Click here

Recombination Lines of Embedded Star Clusters

159   0   0.0 ( 0 )
 Added by Sara Beck
 Publication date 2008
  fields Physics
and research's language is English
 Authors S.C.Beck




Ask ChatGPT about the research

Aims. We are trying to probe conditions in the youngest super star clusters, those still embedded in dense obscuring clouds. Methods. The hydrogen recombination lines in the radio and infrared can be observed through the obscuration, as the optical and UV lines cannot, and give us the kinematics of the ionized gas. Results. The line profiles of the clusters resemble superpositions of the lines of many very young ultra-compact or hyper-compact HII regions. This can be explained if each OB star is individually embedded in dense material which it is accreting, even as it ionizes. Conclusions. We speculate on what this implies for the status and evolutionary state of cluster stars.



rate research

Read More

We study the evolution of embedded clusters. The equations of motion of the stars in the cluster are solved by direct N-body integration while taking the effects of stellar evolution and the hydrodynamics of the natal gas content into account. The gravity of the stars and the surrounding gas are coupled self consistently to allow the realistic dynamical evolution of the cluster. While the equations of motion are solved, a stellar evolution code keeps track of the changes in stellar mass, luminosity and radius. The gas liberated by the stellar winds and supernovae deposits mass and energy into the gas reservoir in which the cluster is embedded. We examine cluster models with 1000 stars, but we varied the star formation efficiency (between 0.05-0.5), cluster radius (0.1-1.0 parsec), the degree of virial support of the initial population of stars (0-100%) and the strength of the feedback. We find that an initial star fraction $M_star/M_{rm tot} > 0.05$ is necessary for cluster survival. Survival is more likely if gas is not blown out violently by a supernova and if the cluster has time to approach virial equilibrium during out-gassing. While the cluster is embedded, dynamical friction drives early and efficient mass segregation in the cluster. Stars of $m gtrsim 2,M_odot$ are preferentially retained, at the cost of the loss of less massive stars. We conclude that the degree of mass segregation in open clusters such as the Pleiades is not the result of secular evolution but a remnant of its embedded stage.
We report on the discovery of several compact regions of mid-infrared emission in the starforming circum nuclear disk of the starburst/Seyfert2 galaxy NGC7582. The compact sources do not have counterparts in the optical and near-infrared, suggesting that they are deeply embedded in dust. We use the [NeII]12.8 micron line emission to estimate the emission measure of the ionized gas, which in turn is used to assess the number of ionizing photons. Two of the brighter sources are found to have ionizing fluxes of ~2.5x10^52, whereas the fainter ones have ~1x10^52 photons/s. Comparing with a one Myr old starburst, we derive stellar masses in the range (3-5)x10^5 Msun, and find that the number of O-stars in each compact source is typically (0.6-1.6)x10^3. We conclude that the compact mid-infrared sources are likely to be young, embedded star clusters, of which only a few are known so far. Our observation highlights the need for high resolution mid-infrared imaging to discover and study embedded star clusters in the proximity of active galactic nuclei.
Solving the recombination equation has been a long-standing challenge of emph{deterministic} population genetics. We review recent progress obtained by introducing ancestral processes, as traditionally used in the context of emph{stochastic} models of population genetics, into the deterministic setting. With the help of an ancestral partitioning process, which is obtained by letting population size tend to infinity (without rescaling parameters or time) in an ancestral recombination graph, we obtain the solution to the recombination equation in a transparent form.
254 - M. Fatuzzo , F. C. Adams 2007
A large fraction of stars form within young embedded clusters, and these environments produce a substantial ultraviolet (UV) background radiation field, which can provide feedback on the star formation process. To assess the possible effects of young stellar clusters on the formation of their constituent stars and planets, this paper constructs the expected radiation fields produced by these clusters. We include both the observed distribution of cluster sizes $N$ in the solar neighborhood and an extended distribution that includes clusters with larger $N$. The paper presents distributions of the FUV and EUV luminosities for clusters with given stellar membership $N$, distributions of FUV and EUV luminosity convolved over the expected distribution of cluster sizes $N$, and the corresponding distributions of FUV and EUV fluxes. These flux distributions are calculated both with and without the effects of extinction. Finally, we consider the effects of variations in the stellar initial mass function on these radiation fields. Taken together, these results specify the distributions of radiation environments that forming solar systems are expected to experience.
154 - M. S. N. Kumar 2004
We present sub-arcsecond (0.35-0.9), near-infrared J,H,K band photometric observations of six fields along the W51 Giant Molecular Cloud (W51 GMC). Our observations reveal four new, embedded clusters and provide a new high-resolution (0.35) view of the W51IRS2 (G49.5-0.4) region. The cluster associated with G48.9-0.3 is found to be a double cluster enclosed in a nest of near-infrared nebulosity. We construct stellar surface density maps for four major clusters in the W51 GMC. These unveil the underlying hierarchical structure. Color-color and color-magnitude diagrams for each of these clusters show clear differences in the embedded stellar populations and indicate the relative ages of these clusters. In particular, the clusters associated with the HII regions G48.9-0.3 and G49.0-0.3 are found to have a high fraction of YSOs and are therefore considered the youngest of all the near-infrared clusters in the W51 GMC. The estimated masses of the individual clusters, when summed, yield a total stellar mass of ~10^4 Msun in the W51 GMC, implying a star formation efficiency of 5-10%. These results in comparision with the CO observations of the W51 GMC, suggest for the first time, that star formation in the W51 GMC is likely triggered by a galactic spiral density wave.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا