What will Gaia tell us about the Galactic disk?


Abstract in English

Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and the transverse velocity to an accuracy of about 1 km/s. Gaia will observe tracers of Galactic structure across the whole HR diagram, including Cepheids, RR Lyrae, white dwarfs, F dwarfs and HB stars. Onboard low resolution spectrophotometry will permit -- in addition to a Teff estimate -- dwarf/giant discrimination, metallicity measurement and extinction determination. For the first time, then, Gaia will provide us with a 3D spatial/properties map and at least a 2D velocity map of these tracers (RVs will be obtained too for brighter stars.) This will be a goldmine of information from which to learn about the origin and evolution of the Galactic disk. I briefly review the Gaia mission, and then show how the expected astrometric accuracies translate into distance and velocity accuracies and statistics. I examine the impact Gaia should have on a few scientific areas relevant to the Galactic disk. I discuss how a better determination of the spiral arm locations and pattern speed, plus a better reconstruction of the Suns orbit over the past billion years (from integration through the Gaia-measured gravitational potential) will allow us to assess the possible role of spiral arm crossings in ice ages and mass extinctions on the Earth.

Download