Using Howe duality we compute explicitly Kostant-type homology groups for a wide class of representations of the infinite-dimensional Lie superalgebra $hat{frak{gl}}_{infty|infty}$ and its classical subalgebras at positive integral levels. We also obtain Kostant-type homology formulas for the Lie algebra $ widehat{frak{gl}}_infty$ at negative integral levels. We further construct resolutions in terms of generalized Verma modules for these representations.