Do you want to publish a course? Click here

Finite-Temperature Scaling of Magnetic Susceptibility and Geometric Phase in the XY Spin Chain

150   0   0.0 ( 0 )
 Added by Haitao Quan
 Publication date 2009
  fields Physics
and research's language is English
 Authors H. T. Quan




Ask ChatGPT about the research

We study the magnetic susceptibility of 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits the finite-temperature scaling behavior. This scaling behavior of the magnetic susceptibility in 1D quantum XY model, due to the quantum-classical mapping, can be easily experimentally tested. Furthermore, the universality in the critical properties of the magnetic susceptibility in quantum XY model is verified. Our study also reveals the close relation between the magnetic susceptibility and the geometric phase in some spin systems, where the quantum phase transitions are driven by an external magnetic field.



rate research

Read More

We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagnetic region of the uniform magnetic field $h$, all the concurrences are textit{generated} by the random magnetic field and by the thermal fluctuation. In one particular region of $h$, the next-nearest neighbor concurrence is generated by the random field but not at finite temperatures. We also find that the qualitative behavior of the maximum point of the entanglement in the random magnetic field depends on whether the variance of its distribution function is finite or not.
The time evolution of quantum many-body systems is one of the least understood frontiers of physics. The most curious feature of such dynamics is, generically, the growth of quantum entanglement with time to an amount proportional to the system size (volume law) even when the interactions are local. This phenomenon, unobserved to date, has great ramifications for fundamental issues such as thermalisation and black-hole formation, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip to simulate the dynamics of a spin chain, a canonical many-body system. A digital approach is used to engineer the evolution so as to maximise the generation of entanglement. The resulting volume law growth of entanglement is certified by constructing a second chip, which simultaneously measures the entanglement between multiple distant pairs of simulated spins. This is the first experimental verification of the volume law and opens up the use of photonic circuits as a unique tool for the optimisation of quantum devices.
The isolated susceptibility $chi_{rm I}$ may be defined as a (non-thermodynamic) average over the canonical ensemble, but while it has often been discussed in the literature, it has not been clearly measured. Here, we demonstrate an unambiguous measurement of $chi_{rm I}$ at avoided nuclear-electronic level crossings in a dilute spin ice system, containing well-separated holmium ions. We show that $chi_{rm I}$ quantifies the superposition of quasi-classical spin states at these points, and is a direct measure of state concurrence and populations.
We present a simple derivation of the Hellmann-Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-dimensional Ising model and the Lipkin model. We show that the Hellmann-Feynman theorem allows one to calculate expectation values of operators that appear in the Hamiltonian. This is particularly useful when the total free-energy is available, but there is not direct access to the thermal average of the operators themselves.
Motivated by recent development in quantum fidelity and fidelity susceptibility, we study relations among Lie algebra, fidelity susceptibility and quantum phase transition for a two-state system and the Lipkin-Meshkov-Glick model. We get the fidelity susceptibility for SU(2) and SU(1,1) algebraic structure models. From this relation, the validity of the fidelity susceptibility to signal for the quantum phase transition is also verified in these two systems. At the same time, we obtain the geometric phase in these two systems in the process of calculating the fidelity susceptibility. In addition, the new method of calculating fidelity susceptibility has been applied to explore the two-dimensional XXZ model and the Bose-Einstein condensate(BEC).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا