Do you want to publish a course? Click here

Canonical Group Quantization, Rotation Generators and Quantum Indistinguishability

145   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the method of canonical group quantization, we construct the angular momentum operators associated to configuration spaces with the topology of (i) a sphere and (ii) a projective plane. In the first case, the obtained angular momentum operators are the quantum version of Poincares vector, i.e., the physically correct angular momentum operators for an electron coupled to the field of a magnetic monopole. In the second case, the obtained operators represent the angular momentum operators of a system of two indistinguishable spin zero quantum particles in three spatial dimensions. We explicitly show how our formalism relates to the one developed by Berry and Robbins. The relevance of the proposed formalism for an advance in our understanding of the spin-statistics connection in non-relativistic quantum mechanics is discussed.



rate research

Read More

A new canonical divergence is put forward for generalizing an information-geometric measure of complexity for both, classical and quantum systems. On the simplex of probability measures it is proved that the new divergence coincides with the Kullback-Leibler divergence, which is used to quantify how much a probability measure deviates from the non-interacting states that are modeled by exponential families of probabilities. On the space of positive density operators, we prove that the same divergence reduces to the quantum relative entropy, which quantifies many-party correlations of a quantum state from a Gibbs family.
We propose a quantum system in which the winding number of rotations of a particle around a ring can be monitored and emerges as a physical observable. We explicitly analyze the situation when, as a result of the monitoring of the winding number, the period of the orbital motion of the particle is extended to $n>1$ full rotations, which leads to changes in the energy spectrum and in all observable properties. In particular, we show that in this case, the usual magnetic flux period $Phi_0=h/q$ of the Aharonov-Bohm effect is reduced to $Phi_0/n$.
Dynamical semigroups have become the key structure for describing open system dynamics in all of physics. Bounded generators are known to be of a standard form, due to Gorini, Kossakowski, Sudarshan and Lindblad. This form is often used also in the unbounded case, but rather little is known about the general form of unbounded generators. In this paper we first give a precise description of the standard form in the unbounded case, emphasizing intuition, and collecting and even proving the basic results around it. We also give a cautionary example showing that the standard form must not be read too naively. Further examples are given of semigroups, which appear to be probability preserving to first order, but are not for finite times. Based on these, we construct examples of generators which are not of standard form.
180 - G. Gubbiotti , M.C. Nucci 2013
The classical quantization of a Lienard-type nonlinear oscillator is achieved by a quantization scheme (M.C. Nucci. Theor. Math. Phys., 168:997--1004, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrodinger equation. This method straightforwardly yields the correct Schrodinger equation in the momentum space (V. Chithiika Ruby, M. Senthilvelan, and M. Lakshmanan. J. Phys. A: Math. Gen., 45:382002, 2012), and sheds light into the apparently remarkable connection with the linear harmonic oscillator.
Covariant affine integral quantization is studied and applied to the motion of a particle in a punctured plane Pp, for which the phase space is Pp X plane. We examine the consequences of different quantizer operators built from weight functions on this phase space. To illustrate the procedure, we examine two examples of weights. The first one corresponds to 2-D coherent state families, while the second one corresponds to the affine inversion in the punctured plane. The later yields the usual canonical quantization and a quasi-probability distribution (2-D affine Wigner function) which is real, marginal in both position and momentum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا