Excitations of the One Dimensional Bose-Einstein Condensates in a Random Potential


Abstract in English

We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as $ell(omega)sim 1/omega^alpha$. We show that the well known result $alpha=2$ applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, $alpha$ starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, $alpha=1$. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.

Download